En mathématiques et en physique, une surface minimale est une surface minimisant son aire. Ce minimum est réalisé sous une contrainte : un ensemble de points, le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la physique des liquides, le traitement mathématique utilise le langage des surfaces minimales. Usuellement, une définition oblige de préciser le contexte : quel est l'espace ambiant ? quel sens donné à la notion d'aire ? à la minimisation ?
En géométrie différentielle élémentaire, une surface minimale est une surface fermée et bornée d'un espace affine réel euclidien de dimension 3 à bord régulier minimisant l'aire totale à contour fixé. La définition se généralise en géométrie différentielle : une surface minimale dans une variété riemannienne donnée est le plongement d'une variété compacte à bord minimisant le volume riemannien à bord fixé.
Intuitivement, une surface minimale est une surface dont l'aire ou le volume ne peut qu'augmenter lorsqu'on lui applique une perturbation suffisamment petite. Les surfaces minimales forment donc l'analogue en dimension supérieure des géodésiques (courbes dont la longueur ne peut qu'augmenter sous l'effet d'une perturbation assez petite et assez localisée).
Décrire les surfaces minimales n'est pas un problème mathématique simple. La première approche est d'effectuer un calcul des variations sur l'aire ou le volume riemannien vu comme une fonctionnelle d'énergie. Cette méthode permet d'en décrire les points critiques : il s'agit des surfaces réglées dont la courbure moyenne est nulle, ou des sous-variétés dont la courbure sectionnelle est nulle. Cette propriété est parfois présentée comme une définition des surfaces minimales. Les deux définitions ne sont pas équivalentes.
Certaines surfaces minimales peuvent être matérialisées par des bulles de savon s'appuyant sur un contour, car le film de savon tend à minimiser son énergie, donc sa surface. Elles sont utilisées justement en ingénierie pour minimiser la surface de contact et donc par exemple les pertes d'énergie.
En 1744, Leonhard Euler posait et résolvait le premier problème de surface minimale : trouver, entre toutes les surfaces passant par deux cercles parallèles, celle dont la surface était la plus petite. Il découvrit ainsi la caténoïde. En 1755, Lagrange, alors âgé de 19 ans, énonce l' équation d'Euler-Lagrange s'appliquant à une surface minimale s'appuyant sur un contour fermé (voir ci-dessous pour une preuve actualisée). En 1776, Meusnier déduit de l'équation différentielle de Lagrange que les courbures principales doivent être opposées, ce qui se traduit par une courbure moyenne nulle. Il découvre par la même occasion l'hélicoïde.
Depuis lors, il est établi que les surfaces minimales de l'espace euclidien s'appuyant sur un contour donné ont une courbure moyenne nulle. Cette propriété traduit l'aspect local de la surface : pour qu'une déformation légère ne puisse qu'augmenter la surface, il faut qu'elle soit de type selle, comme l'illustre le schéma ci-contre. Lorsqu'on déforme une surface convexe (à gauche), donc de courbure moyenne non-nulle, toute les lignes de cette surface s'allongent ou rétrécissent en même temps (en rouge). En revanche, lorsqu'on déforme une surface de type selle, certaines de ces lignes de surface s'allongent alors que d'autres rétrécissent, selon la direction, illustrant le fait que la surface elle-même est de courbure moyenne nulle.
En 1866, Weierstrass démontre qu'une solution à l'équation d'Euler-Lagrange vérifie les équations de Cauchy-Riemann : une telle solution est donc une fonction holomorphe. En 1873, le physicien belge Joseph Plateau généralise une observation expérimentale faite à l'aide de films de savons : pour tout contour donné homéomorphe à un cercle, il existe une surface minimale, donc une solution à l'équation d'Euler-Lagrange. On appela par la suite " Problème de Plateau " le fait de trouver cette solution.
Une recherche particulièrement active en géométrie différentielle se concentre sur les surfaces minimales depuis les années 1960[1]. Avant 1980, seuls six types de surfaces minimales de l'espace euclidien étaient connues : le plan, la caténoïde, l'hélicoïde, la surface d'Enneper et les deux types de surfaces de Scherk. Mais en 1981, Meeks, se basant sur des travaux antérieurs de Costa, publia une nouvelle famille[2], et bientôt suivirent de dizaines d'autres. Ce sont les progrès de l'informatique qui rendirent possible ces découvertes en multipliant la puissance de calcul des ordinateurs.
Il existe aujourd'hui plus d'une centaine de familles de surfaces minimales complètes. De nombreuses questions restent encore ouvertes notamment en dimension supérieure. La recherche actuelle vise à minimiser la courbure moyenne par une étude menée sur les flots[3].
La sphère, qui possède une courbure moyenne constante non-nulle, n'est pas une surface minimale au sens restrectif du terme. Elle vérifie cependant une autre propriété de minimisation : elle est la surface d'aire minimale enfermant un volume donné (lire à ce sujet Théorème isopérimétrique).
Une surface de R3 peut localement après changement de coordonnées (euclidiennes) être représenté comme le graphe d'une fonction réelle à deux variables u et v. Plus précisément, la surface devient l'ensemble des points de coordonnées :
et en utilisant les notations
Cette équation donne une relation non évidente entre les dérivées partielles de f aux premier et second ordre : c'est un exemple d'équations aux dérivées partielles.
Exemples : La seule famille de solutions de la forme z = f(v / u) en est l'hélicoïde. La seule famille de solution de la forme z = f(u) + g(v) est une surface de Scherk.
La théorie de Morse se relève assez efficace pour compter les points critiques ; elle est célèbre pour avoir donné les inégalités de Morse qui permettent d'obtenir des estimations pour le nombre de points critiques d'une fonction définie sur un espace compact de dimension finie. Les surfaces de courbure nulle se présentent comme les points critiques de l'aire ou du volume. Il est tentant d'appliquer la théorie de Morse : cependant, les variations sur les surfaces impliquent nécessairement une étude en dimension infinie. La compacité ne peut plus être invoquée pour des raisons topologiques fondamentales[4].
Toutefois, une théorie analogue est réalisable et fournit l'identité:
où n est le nombre de surfaces minimales distinctes, et les Yn des entiers, nombres caractéristiques associés à chaque surface minimale.
Dans certains cas, on peut matérialiser une surface minimale par un film de savon. En effet, un film de savon tend à minimiser son énergie potentielle ce qui revient à diminuer sa surface. Plus précisément, il obéit à l'équation de Laplace-Young :
Cette représentation a toutefois d'intéressantes limites. En effet, ne peuvent être représentées de cette manière que des équilibres stables de l'énergie potentielle. Imaginons un contour en forme de "chips". Trois surfaces minimales peuvent s'appuyer sur ce contour, mais seules deux correspondent à des films de savons : la troisième est un équilibre instable, un film de savon "fantôme", c'est le cas correspondant par exemple à une surface d'Enneper.
En architecture, l'utilisation de surfaces minimales permet à la fois de minimiser la quantité de matériaux utilisés et de mieux gérer les contraintes physiques en mimant un film de savon sur une armature. Un exemple frappant en est le stade olympique de Munich, qui date de 1972.