Icosaèdre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Structure mathématique d'un icosaèdre, solide de Platon

Construction par les coordonnées

Il existe un repère cartésien orthonormal permettant d'exprimer simplement les coordonnées des sommets de l'icosaèdre, si la longueur d'une arête est égale à 2.

La première partie de cet article présente plusieurs résultats mais aucune preuve. L'existence même d'un icosaèdre régulier convexe n'est pas démontrée. Une méthode simple consiste à déterminer des points, candidat à être les sommets d'un polyèdre régulier convexe. La démarche utilisée ici consiste à trouver un ensemble de points E possédant 4 propriétés qui sont vérifiées si ces points sont les sommets de l'icosaèdre :

  • L'ensemble E possède 12 sommets,
  • il existe une sphère contenant tous les points de E,
  • Le polyèdre P enveloppe convexe de E, possède des faces formant toutes des triangles équilatéraux et,
  • si l'on choisit astucieusement le repère, multiplier n'importe quelle coordonnée d'un sommet par -1 d'un point de E donne encore un point de E.

La dernière propriété est une conséquence de la stabilité de l'icosaèdre par trois rotations d'un demi-tour et d'axes perpendiculaires deux à deux. Pour obtenir des calculs simples, il est judicieux de fixer la longueur d'une arête à 2 et de positionner celle la plus à droite, parallèle à l'axe des y. On obtient les coordonnées suivantes :

 (\pm \varphi, \pm 1, 0)\,,\quad (\pm 1, 0, \pm\varphi)\quad \text{et}\quad (0,\pm\varphi, \pm 1)

Ici φ désigne le nombre d'or, égal à 1/2.(1 + √5). Une fois les coordonnées établies, on dispose d'une preuve de l'existence d'un icosaèdre régulier convexe à 12 sommets. On peut en effet montrer que P est un polyèdre régulier à 12 sommets. Il suffit de vérifier que pour tout sommet, il existe exactement 5 arêtes contenant ce sommet, qu'elles sont de mêmes longueurs et que ces 5 arêtes définissent bien 5 triangles équilatéraux.

Ces coordonnées permettent aussi de calculer les constantes caractéristiques de l'icosaèdre, décrites dans le paragraphe précédent.

Groupe de symétrie

La loi de composition des isométries d'un espace euclidien de dimension 3 confère à l'ensemble de ces applications une structure de groupe. Les isométries laissant globalement invariant l'icosaèdre est un sous-groupe, d'ordre 120, dénommé groupe de symétrie de l'icosaèdre. Ce groupe contient lui-même un sous-groupe, composé des rotations, il est dénommé groupe de symétrie propre. Il contient 60 éléments et sa structure est connue. Elle est une copie d'un sous-groupe du groupe des permutations d'un ensemble de 5 éléments. Cette structure de 60 éléments est constitué par toutes les permutations qui s'obtiennent en combinant des permutations qui bougent 3 éléments et en laissent 2 stables, elle porte le nom de groupe alterné de degré 5. L'existence d'une telle structure permet d'étudier l'icosaèdre à l'aide d'une démarche usant de techniques radicalement différentes et issues de la théorie des groupes. La théorie des représentations d'un groupe fini nous indique que, en un certain sens, il n'existe qu'une manière d'incarner le groupe A5, en un ensemble de 60 rotations d'un espace euclidien de dimension 3 (les démonstrations sont données dans l'article groupe alterné). On peut, à l'aide de cette théorie, démontrer rigoureusement l'existence d'un solide de Platon, contenant 12 sommets, 30 arêtes et 20 faces, globalement invariant par un groupe de rotations, copie du groupe alterné de degré 5. Les faces de ce polyèdre sont des triangles équilatéraux.

Le groupe de symétrie complet est isomorphe au produit direct du groupe alterné par le groupe cyclique d'ordre 2, qui forme bien un groupe d'ordre 120.

Page générée en 0.877 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise