Phénanthrène - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

production

Il est recueilli dans l'huile d'anthracène, dans le filtrat de résidus d'anthracène cristallisé, ou dans la fraction légère de distillation de l'anthracène brut. L'huile étant elle-même produite par distillation du goudron de houille.

Formes canoniques du phénanthrène

\longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow

Sources de pollution et d’exposition

Le phénanthrène provient essentiellement d'une mauvaise combustion de bois, charbon ou pétrole. Il est généralement associé à la formation de goudron.
On en trouve aussi dans fumée de tabac, les échappements de Diesel ou de moteur à essence, dans les viandes grillées au charbon de bois (barbecue), dans les huiles moteur usagées, etc… La principale voie d'exposition professionnelle est respiratoire ou cutanée dans de rares cas. La granulométrie, solubilité et capacité d'adsorption des particules aéroportées a une grande importance pour le calcul du risque lié à l'inhalation.

Taux actuellement présent dans l'environnement : Selon la base de données HSDB (1999), on en trouve habituellement moins de 0 1 ng·m-3 dans l'air et jusqu'à 10 ng·l-1 dans l'eau de pluie ou les eaux de surface, le sol et les sédiments en contenant habituellement moins de 10 μg·kg-1.

Un indicateur d'exposition (ou IBE pour indice biologique d'exposition) aux HAP est généralement le Naphtol urinaire, qui est dans la population moyenne compris entre zéro et 6 µg/L chez les non fumeurs et inférieur à 40 μg·l-1 chez les fumeurs. En médecine du travail, l'exposition professionnelle au phénanthrène est réputée mieux mesurée par un dosage urinaire des hydroxyphénanthrènes (ou phénanthrols), à partir d'échantillon récolté en fin de journée ou en fin de poste, en fin de la semaine de travail car il est bien corrélé à l'exposition au phénanthrène, mais soumis à d'importantes variations individuelles (il faut notamment tenir compte du fait qu'il est augmenté chez les fumeurs). Selon l'INRS, une exposition professionnelle à environ 3,5 μg de phénanthrène par mètre cube d'air donne des taux urinaires de la somme des 1, 2+9, 3 et 4-OH phénanthrènes allant de 8 à 13 μg·g-1 de créatinine ; Une exposition autour de 40 μg·m-3 correspondant à un taux urinaires de la somme des 1, 2+9, 3 et 4-OH phénanthrènes d'environ 40 μg·g-1 de créatinine.

Utilisations

On l'utilise pour produire

  • des colorants,
  • des explosifs (c'est un des polluants trouvés dans les sols pollués par certaines usines de munitions),
  • des produits pharmaceutiques.
  • C'est une base utilisées pour synthétiser d'autres produits chimiques (9,10-phénanthrénequinone, acide 2,2 diphénique) dont certains sont par exemple utilisés pour la fabrication de conducteurs électriques utilisés dans les batteries et les cellules photovoltaïques.

Toxicologie & écotoxicologie

C'est un produit bio-accumulable, dont la métabolisation et la cinétique dans l'environnement sont encore mal connus. La bioaccumulation a été mesurée pour quelques espèces par traçage de phénanthrène radiomarqué au carbone 14 avec confirmation par chromatographie quand on veut distinguer la molécule mère de ses métabolites.

Diverses expériences ont montré que les organismes aquatiques l'accumulent (plus ou moins selon l'espèce et les conditions du milieu) dans leur milieu intérieur et parfois fortement (par exemple chez certains crustacés) dans l'exosquelette chitineux)

Facteur de bioconcentration (BCF)

Le (BCF pour bio-Concentration Factor) a été déterminé pour différents organismes vivant dans des milieux variés (eau, sol). Attention : l'intensité et la durée d'exposition varient selon les expériences

Plantes : Elles peuvent absorber le phénanthrène et certains de ses composés par leurs feuilles s'il est en phase gazeuses et/ou particulaire, mais aussi via leurs racines quand il est dans le sol. Les algues réagissent en fixant moins l'azote.

Animaux : Ce produit semble affecter les animaux marins et a été étudié chez quelques animaux terrestres (dont collembole et vers de terre vivant en sols pollués). Les crustacés d'eau douce sont aussi affectés (test de la daphnie).
Crustacés :

  • Le BCF pour 4 jours était de 210 chez une crevette marine (Crangon septemspinosa) exposée à une contamination en continu sur 4 jours à 4,3 μg·l-1, suivie d’une période de décontamination de 14 jours (dosages HPLC ; d'après McLeese et Burridge, 1987).
  • Le BCF pour 6 h était très élevée (28 145) pour Pontoporeia hoyi exposée à une contamination en continu sur seulement 6 heures (0,7 à 7,1 μg·l-1) suivie d’une phase de décontamination de 14 jours. (Dosages Carbone 14 + chromatographie, selon Landrum, 1988). Cet essai n'a pas été retenu comme valeur de référence par l'INERIS parce que le BCF élevé résulte sans doute d'une fixation sur la chitine de la carapace, mais ce résultat garde une valeur pour l'écotoxicologie marine et la concentration dans la chaine alimentaire sauvage. De plus les carapaces de crabes et crevettes sont exploitées par l'industrie agroalimentaire pour en extraire des arômes.

Oligochètes :

  • Le BCF pour 6 h était de 5 055 pour Stylodrilus heringianus exposée à une contamination en continu sur 6 heures à des concentrations de moins de 200 μg/L, avec période de décontamination de 8 jours (Dosages Carbone 14 + chromatographie, selon Frank et al., 1986).

Mollusques marins :

  • Le BCF pour 4 jours était de 1280 pour Mya arenaria exposée à une contamination en continu (concentration de 4,3 μg·l-1 sur 4 jours, suivie d’une phase de décontamination de 14 jours, avec Dosages HPLC)
  • Le BCF pour 6 h était de 1 240 pour la moule (filtreur) Mytilus edulis exposée à une contamination en continu (concentration de 4,3 μg·l-1) sur 4 jours suivie d’une phase de décontamination de 14 jours (dosages HPLC).

L'INERIS a proposé de retenir comme référence le facteur de bioconcentrationde 5 055 (obtenue à partir de l’oligochète).

Cinétique dans l’organisme, métabolisation

Les données manquent chez l’Homme, mais une contamination pulmonaire, orale ou cutanée semble possible et sont avérées sur le modèle animal. La voie percutanée est clairement démontrée chez l'Homme : Après application cutanée (8 h par jour, 2 jours consécutifs) d'une crème à 2 % de goudron de houille chez des volontaires sains, le phénanthrène est retrouvé le sang des volontaires étudiés Le métabolisme et la cinétique du phénanthrène n'ont cependant pas été spécifiquement étudiés dans l'organisme humain. On déduit de sa ressemblance chimique avec le naphtalène qu'il devrait induire la formation de quinones, de phénols et qu'il pourrait se conjuguer au glutathion. Voir les données (éco-)toxicologiques des articles ci dessous ;

L'excrétion de la partie non métabolisée du Phénanthrène se fait essentiellement via les urines selon l'INERIS, de même pour la partie métabolisée selon les conclusions d'une étude de salariés d'une cokerie qui a montré que les taux des différents HAP absorbés (phénanthrène, pyrène et benzo(a)pyrène) étaient corrélables aux taux de leurs principaux métabolites connus (phénols et dihydrodiol) mesurés dans les urines ...alors que l'excrétion des autres HAP après biotransformation dans le foie en (poly)-hydroxy-HAP secondairement glucuro ou sulfoconjugués sont plutôt éliminés principalement dans les fèces (15 à 20 % seulement via l'urine)

Chez l’animal ; Le modèle animal a démontré le passage du phénanthrène via les parois intestinales, la peau et les muqueuses des voies respiratoires.

  • voie intestinale : Du phénanthrène radio-marqué injecté par cathéter dans le duodénum de rats de laboratoire, est absorbé puis retrouvé dans la bile et les urines (avec une absorption plus forte en présence de bile).
  • Voie percutanée : 79,1 à 89,7 % d'une dose (6,6 à 15,2 μg·cm-2) de phénanthrène appliquée sur la peau de cobayes mise en culture ont été absorbés par la peau.

Ces résultats sont en accord avec ceux obtenus in vivo.

  • Voies respiratoires : Trois chiennes (des Beagles) ont été exposées en laboratoire à 2,8 mg·kg-1 de phénanthrène (instillation intra-trachéale) et à 7,7 mg·kg-1 de benzo[a]pyrène (inhalation d'un aérosol) ; 50 % du phénanthrène instillé et environ 100 % du benzo[a]pyrène administré étaient respectivement éliminés au bout de 1 minute et de 2,4 minutes. Les auteurs en déduisent que la clairance des HAP (très lipophiles) tels que le benzo[a]pyrène est limitée par la diffusion des HAP à travers les septas alvéolaires alors que la clairance du phénanthrène (moins lipophiles) est surtout limitée par le flux sanguin.

Une étude au moins à porté sur la métabolisation du phénanthrène, mais in vitro sur des cellules de peau de cobayes (Ng et al., 1991). Elle a montré que le phénanthrène y était transformé en 9,10-dihydrodiol phénanthrène, en 3,4-dihydrodiol phénanthrène, en 1,2-dihydrodiol phénanthrène, avec des traces d’hydroxy-phénanthrène.

Toxicité aiguë ?

D'après les données disponibles en 2005, elle n'a que peu été étudiée chez l’homme, de même que chez l’animal

Par voie externe.

  • Quelques études existantes laissent penser que le phénanthrène ne présente pas de toxicité aiguë chez l'animal lorsqu'il est exposé par voie externe. Aucun test n'a montré chez l'animal de sensibilisation cutanée par contact avec phénanthrène.

Pour les autres voies :

  • Des DL50 de 700 mg·kg-1 et de 1 000 mg·kg-1 ont été données pour la souris.
  • La DL50 par voie intra-péritonéale est de 700 mg·kg-1
  • La DL50 par voie intraveineuse est de 56 mg·kg-1 (Montizaan et al., 1989).

Effets induits : Ils ont peu été étudiés.
Chez le rat, l'injection intra-péritonéale a été suivie d'une congestion du foie, d'une augmentation des taux d’aspartate aminotransférase et d’alanine aminotransférase, puis d' γ-glutamyl transpeptidase après 24 h.
Chez le rat toujours, une exposition orale à 100 mg·kg-1·j-1 de phénanthrène durant 4 jours s'est traduite par 30 % d'accroissement de l’activité de la carboxylesterase (enzyme catalysant l’hydrolyse des esters acides carboxyliques) de la muqueuse intestinale, sans altérer l’action de la carboxylestérase hépatique et rénale . Sans autres symptômes de toxicité gastro-intestinale, cette seule réaction n'est pas considérée comme un signe de forte toxicité, mais c'est un indice qui peut annoncer la survenue d'effets plus sérieux rappelle l'INERIS.
D'autres rats exposés 4 jours à 100 mg·kg-1·j-1 de phénanthrène ont présenté une hausse minime du taux d'aldéhyde déshydrogénase cytosolique, mais très inférieure à celle observée pour les principaux HAP.

Toxicité chronique

En 2005, l'INERIS ne disposait pas pour son évaluation de donnée sur d'éventuels effets systémiques chronique chez l’Homme .

Effets cancérigènes ?

Faute de données suffisantes ou disponibles (quel que soit le mode d’absorption de la molécule) ni chez l'homme, ni même chez l'animal, ce risque n'a pas été évalué ni par l’Union Européenne, ni par le CIRC/IARC, ni par l'US EPA (IRIS). Pour l'INERIS, les études faites sur les animaux laissent penser que le phénanthrène ne serait pas cancérigène, mais des données contradictoires existent, qui laissent penser que certains composés ou métabolites du produit pourraient être cancérigène.
En 2005, seule une étude avait en 1964 testé le rôle promoteur du phénanthrène ; elle n'avait pas à l'époque détecté d’effet promoteur, cependant selon des données plus récentes :

  • dans les microsomes de foie de rats exposés, du phénanthrène est oxydé en une faible quantité de 1,2-diol-3,4-époxyde reconnu comme potentiellement cancérigène
  • 200 mg de phénanthrène donné dans de l’huile de sésame à 10 rats femelles Sprague-Dawley de 50 jours, n’ont pas induit de tumeur mammaire 10 jours après l’administration du phénanthrène selon Huggins et Yang en 1962… Mais des rats oralement exposés à 20 mg de 7,12-diméthylbenz[a]anthracène développaient dans 100 % des cas des tumeurs mammaires.
  • 3 applications par semaine d’une solution à 5 % de phénanthrène sur la peau de souris n’a pas induit pas de tumeur, même après application cutanée de benzo[a]pyrène (Roe et Grant, 1964), mais les auteurs ne citent pas dans l'étude le nom du solvant ni le nombre de souris testées ni leurs souches (Roe et Grant, 1964).

4 expériences ont testé le rôle initiateur potentiel du phénanthrène,

  • trois n'en ont pas détecté, par exposition orale ou cutanée à l’huile de croton ou au 12-otétradécanoylphorbol-13-acétate (TPA) (Lavoie et al., 1981 ; Salaman et Roe, 1956).
  • l'une a détecté un puissant effet synergique : 10 µmol de phénanthrène appliqué sur la peau de souris sont sans effet cancérigène, mais 40 % des souris développent un papillome si ce traitement a été suivi, une semaine après, d'une application de TPA (5 µmol/dose, 2 fois par semaine, durant 34 semaines.

Effets génotoxiques ?

Il n'a pas été examiné par l’Union européenne et un éventuel effet du phénanthrène sur la reproduction et le développement, chez l’homme ne semble pas avoir été étudié, ni chez l'animal; Il pourrait être étudié en France dans les milieux aquatiques, en complément du SEQ-Eau.

Valeurs toxicologiques de référence (VTR)

Selon l'INERIS, il n'existait pas encore de VTR en 2005 de pour des « effets avec seuil » pour ce produit, mais une TDI (Tolerable Daily Intake, soit la quantité d'absorption journalière tolérable ou DJT (dose journalière tolérable, en français) a été proposée pour une exposition chronique par voie orale au phénanthrène : une TDI de 4×10-2 mg·kg-1·j-1 ; Cette valeur de risque a en fait été élaborée pour tous les hydrocarbures aromatiques de 10 à 16 carbones non actuellement considérés comme cancérigènes.

Page générée en 0.133 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise