Le contenu de l’algèbre multilinéaire a changé bien moins que la présentation, à travers les ans. Voici d’autres pages qui y sont centralement pertinentes :
En principe l’approche abstraite peut recouvrir tout ce qui est fait via l’approche traditionnelle. En pratique cela peut ne pas sembler si simple. D’autre part la notion de naturel est compatible avec le principe de la covariance générale de la relativité générale. Ce dernier fait affaire aux champs tensoriels (les tenseurs variant de point en point sur une variété, mais la covariance affirme que le langage des tenseurs est essentiel à la formulation propre de la relativité générale.
Quelques décennies plus tard le point de vue plutôt abstrait venant de la théorie des catégories fut noué avec l’approche qui avait été développée dans les années 1930 par Hermann Weyl (dans son livre célébré et difficile Les groupes classiques). D’une façon cela amena la théorie à pleins bords, reliant une fois encore le contenu des points de vue anciens et nouveaux.
Consultez ces articles pour certains moyens dans lesquels les concepts de l’algèbre multilinéaire sont appliqués, dans diverses guises :
Espace euclidien • Espace hermitien • Forme bilinéaire • Forme quadratique • Forme sesquilinéaire • Orthogonalité • Base orthonormale • Projection orthogonale • Inégalité de Cauchy-Schwarz • Inégalité de Minkowski • Matrice positive • Matrice définie positive • Décomposition QR • Déterminant de Gram • Espace de Hilbert • Base de Hilbert • Théorème spectral • Théorème de Stampacchia • Théorème de Riesz • Théorème de Lax-Milgram • Théorème de représentation de Riesz