Catastrophe de Tchernobyl - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La centrale de Tchernobyl en Europe.
Les centrales nucléaires en Ukraine.

La catastrophe de Tchernobyl est un accident nucléaire qui s'est produit le 26 avril 1986 dans la centrale nucléaire Lénine en Ukraine. Cet accident a conduit à la fusion du cœur d'un réacteur, au relâchement de radioactivité dans l'environnement et à de nombreux décès, survenus directement ou du fait de l'exposition aux radiations. Il est le seul accident classé au niveau 7 sur l'échelle internationale des évènements nucléaires (INES), ce qui en fait le plus grave accident nucléaire répertorié jusqu'à présent.

La centrale nucléaire Lénine est située sur un affluent du Dniepr à environ 15 km de Tchernobyl (Ukraine) et 110 km de la capitale Kiev, près de la frontière avec la Biélorussie. L'accident de Tchernobyl est la conséquence de dysfonctionnements nombreux et importants : un réacteur mal conçu, naturellement instable dans certaines situations et sans enceinte de confinement ; un réacteur mal exploité, sur lequel des essais hasardeux ont été conduits ; un contrôle de la sûreté par les pouvoirs publics inexistant ; une gestion inadaptée des conséquences de l'accident.

Les conséquences de la catastrophe sont importantes, aussi bien du point de vue sanitaire, écologique, économique que politique. Plus de 200 000 personnes ont été évacuées.

Un rapport de l'AIEA établi en 2005 recense près de 30 morts par syndrome d'irradiation aiguë directement attribuables à l'accident, et estime que le nombre de morts supplémentaires par cancer dans les populations les plus exposées aux rayonnements (estimé à 4 000 morts d'après les modèles de radioprotection) est trop faible par rapport à la mortalité naturelle (100 000 morts, soit 4% d'acroissement) pour être détectable par les outils épidémiologiques disponibles. Des organisations non gouvernementales avancent des chiffres beaucoup plus importants.

Les causes de la catastrophe

L'accident s'est produit lors d'un exercice qui avait pour but de prouver que l'on pouvait relancer la centrale d'elle-même suite à une perte totale du réseau électrique. La centrale était pourvue de générateurs diesel, mais ceux-ci mettaient 15 secondes pour démarrer et de 60 à 75 secondes pour arriver à leur puissance maximale. Ce laps de temps étant considéré comme trop grand, l'objectif était d'utiliser l'énergie cinétique du turbo-alternateur pour relancer les pompes de recirculation primaires pendant cette période. Les réacteurs RBMK sont instables à faible puissance avec du combustible peu enrichi comme c'était le cas. Cet exercice a été conduit à une puissance trop faible et en plein pic Xénon et Iode : on qualifie ce phénomène d'« empoisonnement du réacteur ». La conduite à prendre à ce stade aurait été d'arrêter le réacteur pendant 1 à 2 jours en maintenant un refroidissement permanent le temps que l'iode et le xénon se désintègrent naturellement.

Le réactif de l'explosion est le liquide caloporteur, en l'espèce de l'eau légère. La chaleur aurait provoqué la radiolyse de l'eau, puis la recombinaison de l'hydrogène et de l'oxygène libérés aurait provoqué l'explosion qui a soulevé la dalle de béton recouvrant le réacteur. Selon d'autres experts, l'explosion serait une explosion de vapeur, conduisant aux mêmes conséquences. Le graphite incandescent après l'explosion a fait fondre les crayons d'uranium, en zirconium et s'en est suivie la fusion de l'uranium lui-même qui dégagea des gaz et particules hautement radioactifs qui ont contribué à la contamination des nuages. L'incendie a été entretenu par la suite par la combustion du graphite. L'explosion n'a rien de nucléaire : si le point de départ est bien une réaction nucléaire en chaîne, c'est bien une réaction chimique, et non nucléaire qui a provoqué la catastrophe.

Suite à l'accident, de grandes quantités de radioisotopes, radioactifs (et pour certains, extrêmement toxiques de surcroît), ont été libérées dans l'atmosphère. L'accident qui s'est produit à la centrale nucléaire de Tchernobyl dans le réacteur n°4 est ainsi classé au niveau le plus élevé (le niveau 7) dans l’échelle INES qui mesure la gravité des accidents nucléaires.

Conception et construction du réacteur

Schéma de principe d'un RBMK

Le réacteur de la tranche no 4 est de type RBMK 1000 (réacteur de grande puissance à tubes de force). Par sa conception, ce type de réacteur présente plusieurs points faibles :

  • Son coefficient de vide est positif à basse puissance et dans certaines conditions de fonctionnement (contrairement aux réacteurs RBMK plus récents) : si des bulles se forment dans le fluide caloporteur, la réaction tend à s'emballer. Les opérateurs de la centrale n'en étaient pas au courant. Cet état de fait a les origines suivantes.
    • D'une part, le modérateur prépondérant est le graphite qui est solide et peu sensible en volume aux variations de température.
    • D'autre part, pour pouvoir utiliser de l'uranium 235 peu enrichi, le réseau en fonctionnement est proche de l'optimum de modération.
    • Ces dispositions étaient considérées comme bonnes par les concepteurs parce qu'elles rendent le réseau relativement peu sensible aux variations du taux de vide dans le cours du fonctionnement normal du réacteur. En effet, le taux de vide est variable en fonctionnement; plus la puissance est élevée, plus la pression de vapeur est basse et plus le taux de vide est élevé dans le cœur. Dès lors si l'augmentation du taux de vide déprime fortement la réactivité (soit un effet de vide fortement négatif), une augmentation de la puissance nécessite une manœuvre importante des absorbants de contrôle pour compenser et accompagner la montée en puissance du réacteur. A contrario une relative insensibilité de la réactivité du cœur au taux de vide facilite la régulation d'ensemble en limitant la nécessité de faire varier trop fréquemment la réactivité du cœur au moyen des absorbants de contrôle ce qui est une bonne chose du point de vue de la régulation d'ensemble de la centrale.
    • Dans certaines configurations toutefois on peut se trouver avec un cœur surmodéré dans lequel la disparition d'atomes d'hydrogène modérateurs et celle d'atomes d'oxygène absorbants, induites par l'augmentation du taux de vide dans le cœur, provoquent une augmentation de la réactivité.
  • Le réacteur se retrouve donc à un niveau de puissance faible pour commencer l'expérience dans lequel il est instable : le coefficient de vide était positif c’est-à-dire que plus le réacteur chauffait, plus il produisait de vapeur et plus la réactivité augmentait, le système était divergent. Ce phénomène dû à la conception est pourtant bien connu, c’est pourquoi il était interdit de maintenir le réacteur dans cet état.
  • Le graphite utilisé comme modérateur est inflammable à haute température.
  • Le système d'arrêt d'urgence du réacteur est particulièrement lent (20 secondes). Ce système d'arrêt d'urgence est assuré par le déplacement de barres modératrices, dites barres de contrôle, qui descendent dans le cœur du réacteur. En outre, dans certaines situations les barres de contrôle accroissent la réactivité durant la première phase de leur descente dans le cœur. Cette particularité a été un facteur aggravant de l'accident car les opérateurs ont ainsi été trompés : ils disposaient sans le savoir d'un accélérateur et non pas d'un frein de la réaction nucléaire en chaîne. Dans les centrales du même type que les centrales françaises, ces barres descendent sous la seule action de la gravité en cas d'urgence. De ce fait, elles mettent environ 1 seconde à atteindre leur efficacité maximale.
  • La centrale de Tchernobyl n'avait pas d'enceinte de confinement, contrairement à la plupart des centrales actuelles ; c'est ce qui a permis aux rejets radioactifs de s'échapper aisément dans l'environnement.

Outre ces problèmes de conception, la construction de la centrale a été réalisée sans respecter les normes en vigueur. Un rapport confidentiel de 1979, signé par le directeur du KGB Iouri Andropov et cité par Nicolas Werth, souligne que « divers chantiers de construction réalisant le bloc no 2 de la centrale atomique de Tchernobyl mènent leurs travaux sans aucun respect des normes, des technologies de montage et de construction définies dans le cahier des charges».

En 1983, l'« acte de mise en exploitation expérimentale » du réacteur no 4 de la centrale de Tchernobyl est signé alors que « toutes les vérifications n'avaient pas été achevées ».

Cause directe de l'accident

Une expérience était prévue sur le réacteur no 4, pour tester l'alimentation électrique de secours qui permet au réacteur de fonctionner en toute sécurité pendant une panne de courant. La puissance thermique du réacteur avait été réduite de 3 200 MW à 1 000 MW dans le cadre de ce test dans la nuit du 24 au 25 avril. L'expérience était initialement prévue dans la journée du 25 avril, mais une autre centrale électrique tombe en panne et le centre de régulation de Kiev demande de retarder l'expérience car son énergie est nécessaire pour satisfaire la consommation électrique de la soirée. A 23 h 04, le centre de régulation de Kiev donne l'autorisation de reprendre l'expérience.

L'accident s'est alors produit suite à une série d'erreurs commises par les techniciens de la centrale en supprimant volontairement plusieurs sécurités. Les opérateurs ont notamment violé des procédures garantissant la sécurité du réacteur et donc de la centrale. Enfin, depuis sa mise en service en 1977, la centrale est dirigée par Viktor Petrovitch Brioukhanov, un ingénieur en thermodynamique et non un spécialiste du nucléaire. Il fait partie d'une génération d'hommes promus grâce à « leur volontarisme militant, qui consistait d'abord et avant tout à remplir et dépasser le plan de production, nonobstant le respect des normes de construction ou de sécurité ».

Chronologie des événements

Le test prévoyait que la puissance du réacteur soit située entre 700 et 1 000 MW. La puissance de 700 MW est atteinte le 26 avril à 0 h 05 mais continue à baisser. Lorsqu'elle atteint environ 500 MW, le responsable du régime du réacteur, Leonid Toptunov commet une erreur en insérant les barres de contrôle trop loin. Ceci conduit à la chute de la puissance de sortie qui atteint 30 MW, provoquant un empoisonnement du réacteur au xénon. Les opérateurs essaient alors de rétablir la puissance, mais le xénon-135 accumulé absorbe les neutrons et limite la puissance à 200 MW. Pour débloquer la situation, les opérateurs retirent les barres de carbure de bore, qui servent à contrôler la température du réacteur, au-delà des limites de sécurité autorisées.

Le 26 avril 1986, entre 01 h 03 et 01 h 07, deux pompes supplémentaires du circuit de refroidissement sont enclenchées pour essayer de faire augmenter la puissance du réacteur. Le flot supplémentaire entraîne une hausse de la température dans les échangeurs de chaleur. A 01 h 19, pour stabiliser le débit d'eau arrivant dans les séparateurs de vapeur, la puissance des pompes est encore augmentée et dépasse la limite autorisée. Le système demande l'arrêt d'urgence. Les signaux sont bloqués et les opérateurs décident de continuer.

L'essai proprement dit débute à 01 h 23 et 4 s. Les vannes d'alimentation en vapeur de la turbine sont fermées, ce qui a fait augmenter la pression dans le circuit primaire. Les générateurs diesel démarrent et atteignent leur puissance nominale à 01 h 23 et 43 s. Durant ce temps, l'alimentation des pompes était fournie par l'arrêt des turbo-alternateur. Le débit d'eau passant dans le réacteur décroit au fur et à mesure de la baisse de régime des turbo-alternateur, ce qui provoque la formation de bulles dans le liquide de refroidissement. À cause du coefficient de vide positif, le réacteur entre dans une rétro-action positive, entrainant une rapide montée de la puissance du réacteur.

A 01 h 23 et 40 s l'opérateur en chef ordonne l'arrêt d'urgence. Les barres de contrôle sont descendues, sans grand effet : en effet, le réacteur est déjà bien trop chaud, ce qui a déformé les canaux destinés aux barres de contrôle ; celles-ci ne sont descendues qu'à 1,50 m au lieu des 7 m normaux. A 01 h 23 et 44 s la radiolyse de l'eau conduit à la formation d'un mélange détonnant d'hydrogène et d'oxygène. De petites explosions se produisent, éjectant les barres permettant le contrôle du réacteur. « En 3 à 5 secondes, la puissance du réacteur centuple ». Les 1 200 tonnes de la dalle de béton recouvrant le réacteur sont projetées en l'air et retombent de biais sur le cœur de réacteur, qui est fracturé par le choc.

Un incendie très important se déclare, tandis qu'une lumière aux reflets bleus se dégage du trou formé.

Les techniciens présents sur place, ainsi que Brioukhanov réveillé à 1 h 30, ne saisissent pas immédiatement l'ampleur de la catastrophe. Ce dernier appelle le ministère de l'Énergie à 4 h en déclarant que « Le cœur du réacteur n'est probablement pas endommagé ». Il reçoit pour ordre de maintenir le refroidissement par eau du réacteur; cet ordre, que Brioukhanov persistera à appliquer toute la journée, n'aura pour effet que de libérer plus de radio-éléments dans l'atmosphère et de noyer les installations souterraines communes aux réacteurs 3 et 4, menaçant gravement le fonctionnement et l'intégrité du réacteur 3. L'ingénieur en chef responsable du réacteur 3 prendra, au cours de la journée et contre les directives de Brioukhanov, la décision de faire passer ce réacteur en arrêt à froid, permettant ainsi de le sauver d'une destruction certaine, au vu de la destruction progressive des installations.

Page générée en 0.009 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise