Frank Whittle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Développement du moteur à réaction

Whittle continua de travailler à son projet de moteur après ses études mais l’abandonna lorsque ses calculs firent apparaître qu’il serait aussi lourd qu’un moteur conventionnel fournissant la même poussée. C’est à ce moment qu'il eut l'idée de remplacer le moteur à pistons par une turbine. Au lieu d’utiliser un moteur à pistons pour fournir de l’air comprimé au dispositif de postcombustion, une turbine pourrait utiliser une partie de la puissance fournie par les gaz d'échappement et entraîner un compresseur. La poussée restante servirait à propulser l’appareil.

En juillet 1926, Alan Arnold Griffith (en) publia un document sur les compresseurs et les turbines, sujet qu’il avait étudié au Royal Aircraft Establishment (en) (RAE). Il démontra que de tels dispositifs avaient jusque-là toujours été employés dans un écoulement tourbillonnaire et que l’efficacité des pales de compresseur augmenterait considérablement si on leur donnait une forme aérodynamique. Il poursuivait sa démonstration pour montrer comment le surcroît d’efficacité de tels compresseurs et turbines pourrait permettre de réaliser un moteur à réaction bien qu’il pensât que l’idée n’était pas réalisable et proposait plutôt de mettre l’idée en application pour faire un moteur « turbopropulseur ». À l’époque, les compresseurs utilisaient des compresseurs centrifuges et l’idée ne souleva que peu d’intérêt.

Whittle transmis sa nouvelle idée au Ministère de l’Air. N’ayant que peu de connaissances sur le sujet, il transmit le document à la seule personne qui avait traité le sujet, Griffith. Ce dernier semble avoir été convaincu que le concept simpliste de Whittle ne pourrait jamais atteindre le niveau d’efficacité requis pour être appliqué sur un moteur. Après avoir relevé une erreur dans les calculs de Whittle, il ajouta qu'un compresseur centrifuge serait trop volumineux pour être utilisé en aéronautique et que le gaz d’échappement utilisé directement ne fournirait pas la poussée suffisante. La RAF renvoya les commentaires à Whittle en disant que le concept n’était pas réalisable.

D’autres membres de la RAF n’étaient pas aussi catégoriques, notamment Johnny Johnson qui le convainquit de faire breveter l’idée en janvier 1930. La RAF n’étant pas intéressée par le concept, elle ne le déclara pas 'secret', ce qui faisait que Whittle pouvait en conserver la propriété intellectuelle qui dans le cas contraire aurait échu à la RAF. Ce refus se révéla plus tard être une chance inespérée.

Entre-temps Whittle avait rejoint le cycle de formation des officiers ingénieurs de la RAF à Henlow (Bedfordshire) en 1932 puis à Cambridge (Peterhouse) en 1934, obtenant son diplôme en Mécanique en 1936 avec la meilleure note (cycle appelé Tripos).

La société ’’’Power Jets’’’

Le brevet déposé par Whittle expira en 1935 parce qu’il ne pouvait payer les 5 livres sterling pour son renouvellement. Peu après, il fut contacté par deux anciens de la RAF, Rolf Dudley-Williams et James Tinling, qui désiraient pousser le développement de son moteur. À eux trois, ils fondèrent en 1936 la société Power Jets Ltd. avec un prêt bancaire de 2 000 £. Ils commencèrent leurs travaux avec un moteur expérimental dans une usine de Rugby, Warwickshire appartenant à British Thomson-Houston (BTH), une entreprise de turbines à vapeur. La RAF ne voyait toujours aucun intérêt dans la poursuite de ces efforts mais bien que Whittle fut toujours pilote, il fut mis en disponibilité partielle et autorisé à travailler sur ce concept à condition qu’il n’y consacrât pas plus de 6 heures par semaine.

Financer le développement du premier moteur appelé ’’’WU’’’ (’’Whittle Unit’’) représentait un problème sérieux. Bien que ce financement fut privé. La plupart des investisseurs se tenaient à distance d'un projet qui semblait être à moitié secret mais n’avait pas le soutien de la RAF. Quelque chose clochait : si le système devait marcher, alors pourquoi la RAF ne le finançait-elle pas ? Une fois de plus, quelqu’un n’était pas aussi sceptique que le reste du monde et en octobre 1936, Henry Tizard, recteur du College impérial de Londres (Imperial College London) et président du Comité sur la recherche aéronautique (Aeronautical Research Committee) envoya de nouveau des détails concernant le moteur de Whittle à Griffith. Griffith avait entre temps commencé à réaliser son projet et, sans doute pour ne pas dépriser ses propres efforts, il émit cette fois un avis plus positif. Il maintint sa critique concernant certaines caractéristiques du moteur, semblant ne pas tenir compte du fait que ses performances à haute vitesse et haute altitude constituaient le point crucial du programme.

Mais malgré ces problèmes, Power Jets put terminer la mise au point du WU qui fit un premier essai au banc le 12 avril 1937. Tizard considéra qu’il avait plusieurs longueurs d’avance sur tout autre moteur moderne et réussit à soulever l’intérêt du Ministère britannique de l’Air suffisamment pour financer le développement grâce à un contrat d’un montant de 6 000 £ destiné à réaliser une version avionnable. Cependant, un an devait s’écouler avant que les fonds ne soient disponibles, retardant d'autant le développement.

Pendant ce temps, les essais du WU continuaient, lequel montrait une fâcheuse tendance à s’emballer. Les travaux étant dangereux par nature, le développement fut transféré en 1938 de Rugby dans une fonderie à moitié désaffectée de BTH à Ladywood près de Lutterworth (en) dans le Leicestershire. En mars 1938, le WU y fit un essai réussi. Bien que le potentiel de ce type de moteur fut devenu évident, le ministère continuait à considérer uniquement la production des moteurs à piston.

Pendant ce temps en Allemagne, Hans von Ohain qui avait développé un prototype en 1935, avait déjà dépassé ce stade et commencé à produire une système destiné à voler sur le Heinkel He S3 (en). Il y avait peu de raison de croire que les efforts de Whittle would not have been at the same level or more advanced had the Air Ministry taken a greater interest in the design. Lors du déclenchement de la Seconde Guerre mondiale en septembre 1939, Power Jets employait tout juste 10 personnes et les efforts de Griffith au RAE et de Metropolitan-Vickers étaient tout aussi modestes.

Whittle souffrit énormément du stress résultant de ces hauts et de ces bas. Pour tenir son rythme de travail de 16 h/jour, il « sniffait » de la benzédrine pendant la journée puis prenait des somnifères pour dormir la nuit. Il maigrit beaucoup et devint irascible.

Au début de la guerre, le ministère intervertit les priorités et réexamina les divers projets en cours. Vers 1939, Power Jets pouvait à peine payer sa facture d’électricité lorsqu’une autre visite de représentants du Ministère de l’Air vint changer le cours des choses. Cette fois, Whittle put faire tourner le WU à pleine puissance pendant 20 minutes sans problèmes. L’un des membres de la commission était le directeur de la recherche scientifique H. E. Wimperis, qui quitta la démonstration entièrement convaincu de l'importance du projet.

Un contrat de développement fut immédiatement passé avec Power Jets et un appel d’offres fut lancé auprès de plusieurs sociétés pour mettre en place une chaîne de production capable de fournir 3 000 moteurs en 1942. Power Jets n’ayant aucun moyen de fabrication, le Ministère de l’Air proposa de répartir les contrats de développement et de fabrication entre BTH, Vauxhall et Rover. Finalement, seul Rover fut partie prenante au contrat. Le Ministère proposa aussi un contrat pour réaliser une cellule simple et ce fut Gloster qui remporta le marché.

Whittle avait déjà réfléchi à la possibilité d’adapter le WU très massif en un dispositif avionnable et le nouveau contrat porta sur un système appelé "Whittle Supercharger Type W.1." Cependant, Rover était dans l’incapacité d’assurer la production du moteur W.1. avant que la cellule du Gloster expérimental soit prête. Whittle bricola alors un moteur à partir d’éléments récupérés des essais et l’appela le W.1X qui fit son premier essai au banc le 14 décembre 1940. Ce moteur équipa le Gloster E28/39 pour effectuer des essais de roulage et l’appareil fit un premier bond en l’air le 7 avril 1941.

Le moteur W2/700 qui vola sur Gloster E28/39 (le premier avion anglais équipé d’un turboréacteur) et sur le Gloster Meteor

Il existe un film traitant des premiers essais secrets du E.28. On y voit des citoyens « lambda » vivant proches du site interviewés par la BBC 10 ans plus tard. Ils se souviennent de leur stupéfaction en voyant un avion volant sans hélice et de la question débattue dans les pubs de la région à cette époque : comment cela marchait-il ?

Une nouvelle étude donna naissance au moteur W.2. Tout comme le W.1, il se caractérisait par un « flux inversé », c’est-à-dire que les gaz sortant des chambres de combustion étaient tout d’abord redirigés vers l’avant du moteur avant d’entrer dans la turbine. Ceci permettait de « replier » l'écoulement, les chambres de combustion étant disposées autour de la turbine, d'où un gain important sur la longueur du moteur.

Power Jets consacra aussi en mai 1940 quelque temps à l’étude du W.2Y, un concept similaire mais présentant un écoulement uniquement longitudinal, ce qui d’une part augmentait la longueur du moteur et provoquait une certaine criticité des arbres de transmission mais simplifiait la conception générale. Pour réduire au maximum la masse de l’arbre de transmission, le W.2Y possédait un tube creux dont le diamètre était presque égal au disque de turbine avec un rétreint à chaque extrémité au niveau des liaisons avec le compresseur et la turbine.

Le Ministère de l’Air, languissant d’obtenir un avion à réaction opérationnel, donna son feu vert à BTH pour réaliser un intercepteur bimoteur qui devint le Gloster Meteor. Le Meteor devait être équipé ou bien du W.2 ou du moteur similaire Halford H.1 (appelé plus tard "Goblin") mais de Havilland décida de conserver tous les moteurs Halford pour leur propre concept, le de Havilland Vampire.

Rover

En 1941, Rover installa un laboratoire pour l’équipe de Whittle et une chaîne de production dans l’usine abandonnée de Barnoldswick (en) ainsi que pour ses propres ingénieurs à Waterloo Mill, Clitheroe. C’est là qu'Adrian Lombard essaya de développer à partir du W.2 un concept d’un niveau de qualité apte à la production en série, faisant abstraction des chambres de combustion à flux inversé de Whittle et en réalisant un corps plus allongé et de conception plus simple. Le travail continuait à Barnoldswick sur l’idée originale de Whittle rebaptisée W.2B/23, le concept de Lombard étant lui baptisé W.2B/26. Whittle était indigné par cette évolution, considérant que tous les efforts devaient être axés sur un seul concept et ce, le plus rapidement possible.

Vers la fin 1941, il devint évident que l’alliance entre Power Jets and Rover ne fonctionnait pas. Whittle était frustré par l’incapacité de Rover de fournir des pièces d’un niveau de qualité “série” ainsi que par leur attitude hautaine (« on sait ça mieux que vous ») et éleva la voix de plus en plus souvent. Rover perdit peu à peu son intérêt dans le projet suite aux retards et aux reproches permanents de Power Jets.

Rolls-Royce

En 1940, Stanley Hooker (en) de Rolls-Royce avait rencontré Whittle et l’avait ensuite présenté au directeur de Rolls, Ernest Hives (en). Hooker dirigeait chez Rolls la division des compresseurs qui était toute désignée pour travailler sur les moteurs à turbine. Hives accepta de fournir les pièces indispensables pour faire avancer le projet et ce furent des ingénieurs de Rolls qui aidèrent à résoudre les problèmes sur les premiers moteurs. Début 1942, Whittle commanda à Rolls six moteurs, appelés WR.1 et identiques au W.1.

Les problèmes de Rover devinrent un secret de Polichinelle et Spencer Wilkes (Rover) rencontra Hives et Hooker au pub Swan and Royal près de l’usine de Barnoldswick. Ils décidèrent d’échanger l’usine de moteurs de Barnoldswick contre celle de moteurs de tanks de Rolls à Nottingham. L’accord fut entériné par une poignée de main. L’échange se fit en fait le 1er janvier 1943, bien que la date officielle du transfert de propriété soit ultérieure. Rolls ferma bientôt l’usine “parallèle” de Rover à Clitheroe, bien qu’il y eut poursuivi le développement du W.2B/26.

Le rythme des essais et de la production passa aussitôt à la vitesse supérieure. Au mois de décembre, Rover avait testé le W.2B pendant un total de 37 h mais au cours du mois suivant, Rolls-Royce le testa pendant 390 h. Le W.2B fit son premier essai de 100 h à pleine puissance, soit 725 kgf ou 7,11 kN) le 7 mai 1943. La cellule du prototype du Meteor était terminée, il décolla le 12 juin 1943. Des versions série commencèrent à sortir de chaîne en octobre, tout d’abord sous la désignation W.2B/23, puis RB.23 (Rolls-Barnoldswick) et finalement Rolls-Royce Welland (en). L’usine de Barnoldswick était trop petite pour y produire des moteurs en série et elle redevint un simple centre de recherche sous la direction de Hooker, tandis qu’une autre usine sortait de terre à Newcastle-under-Lyme. Le W.2B/26, rebaptisé Rolls-Royce Derwent (en), inaugura la nouvelle chaîne de fabrication et remplaça bientôt le Welland, ce qui permit d'arrêter la fabrication à Barnoldswick fin 1944.

Malgré des retards (Hitler avait exigé que le chasseur Messerschmitt Me 262 soit transformé en bombardier), la Luftwaffe devançait la Grande-Bretagne de 9 mois. Les Allemands devaient faire face à d’énormes problèmes d’approvisionnement en alliages légers résistants aux hautes températures. Les moteurs à compresseur axial conçus par Anselm Franz (en)) avaient une durée de vie moyenne de 10 à 25 h, un peu plus aux mains d'un pilote expérimenté; certains explosaient parfois au premier démarrage. Les moteurs qui équipaient les Meteor étaient beaucoup plus fiables. Les moteurs britanniques correspondants avaient une durée de vie moyenne entre révisions (MTBO) de 150 h, un taux poussée/masse double et une consommation spécifique inférieure de moitié. Vers la fin de la guerre, toutes les entreprises de Grande-Bretagne travaillaient sur des concepts de moteurs à réaction inspirés de celui de Whittle ou le fabriquaient directement sous licence. Pendant la guerre de Corée, les F-86 Sabre américains équipés de moteurs à écoulement axial inspirés de celui de Franz combattaient des Mikoyan-Gourevitch MiG-15 équipés de copies du moteur Nene de Rolls Royce plc. Vers la fin des années 1950 cependant, la plupart des moteurs avionnés sur les chasseurs étatsuniens ou soviétiques n’appliquaient plus le principe de Whittle mais fonctionnaient avec un écoulement axial.

Développements ultérieurs

Alors que la mise au point du moteur W.2 avançait sans accrocs, Whittle fut envoyé en mission à Boston (Massachusetts) vers le milieu de l’année 1942 pour aider le programme de réacteur de General Electric. GE, le principal fournisseur de turbocompresseurs des États-Unis était un candidat idéal pour lancer rapidement la production de moteurs à réaction. Une cellule d’avion simplifiée, réalisée par Bell Aircraft Corporation et équipée d’un moteur W.2B fit un vol en automne 1942 sous la désignation Bell P-59 Airacomet.

Les travaux de Whittle chez Power Jets continuèrent et aboutirent aux moteurs améliorés W.2/500 et W.2/700. Les deux furent instrumentés pour être testés sur des Meteor, le W.2/700 étant plus tard équipé d’un système de postcombustion (appelé aussi « réchauffe » dans le jargon du métier) ainsi que d’un dispositif expérimental d’injection d’eau destiné à refroidir le moteur et permettant d’augmenter la puissance sans que la turbine fonde. Whittle étudia aussi le principe de l’écoulement axial préconisé par Griffith et conçu le moteur L.R.1. D’autres développements englobèrent l’utilisation de soufflantes qui brassent une masse d’air plus importante, soit en amont (entrée d’air) comme sur les turboréacteurs à double flux modernes, soit en aval (en sortie de tuyère), disposition plus inhabituelle mais un peu plus simple à réaliser.

Les travaux de Whittle avaient provoqué une petite révolution chez les motoristes britanniques et même avant que le E.28/39 n’ait volé, la plupart des sociétés avaient déjà créé leurs propres départements de recherche. En 1939, Metropolitan-Vickers lança un projet pour développer un turbopropulseur à écoulement axial mais modifia le concept ultérieurement pour en faire un moteur à réaction pur baptisé Metrovick F.2 (en). Rolls-Royce avait déjà copié le W.1 pour fabriquer le WR.1 (moins puissant) mais arrêta de travailler sur ce projet après avoir repris les résultats des recherches de Rover. La société de Havilland avait lancé en 1941 un projet de chasseur à réaction appelé tout d’abord « Spider Crab », puis plus tard Vampire avec un moteur maison, le Goblin (Halford H.1) de Frank Halford. Armstrong Siddeley (en) avait aussi développé un concept à écoulement axial, l’ASX mais suivit plus tard le cheminement inverse de Vickers et en fit un turbopropulseur, le Python.

Toute l’industrie travaillant sur ses propres projets, Power Jets n’était plus en mesure de faire des bénéfices. En avril 1944, Power Jets fut nationalisée et devint National Gas Turbine Establishment sur le site expérimental de Ladywood. Elle fusionna en 1946 avec les divisions de RAE dans le cadre d’une réorganisation.

Le moteur Rolls-Royce Derwent
Page générée en 0.139 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise