Spin

Le spin est une propriété quantique intrinsèque associée à chaque particule, qui est caractéristique de la nature de la particule, au même titre que sa masse et sa charge électrique. Elle permet de caractériser le comportement de la particule sous l'effet de la symétrie de rotation de l'espace.

Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les...) simplifiée

La notion de spin (Le spin est une propriété quantique intrinsèque associée à chaque particule, qui est caractéristique de la nature de la particule, au même titre que sa masse et sa charge électrique. Comme la...) permet de classer mathématiquement la façon dont se transforment les objets sous l'effet des rotations de l'espace à trois dimensions. De façon générale, un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être désigné par une étiquette verbale. Il est...) possède un spin s\, s'il est invariant sous une rotation d'angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.) \frac{2\pi}{s}\,. Par exemple :

  • Un objet sans symétrie particulière, par exemple une carte à jouer représentant un trois de trèfle (Les trèfles sont des plantes herbacées de la famille des Fabacées (Légumineuses), appartenant au genre Trifolium.), possède un spin 1 car il est nécessaire d'effectuer une rotation de 2\pi\, (un tour complet) pour qu'il se retrouve dans sa position de départ.
  • Un objet possédant un peu plus de symétrie, comme une dame de pique par exemple, possède un spin 2 car pour qu'elle revienne à sa position de départ, on peut se contenter de lui faire effectuer une rotation de \pi=\frac{2\pi}{2}. (un demi tour)
  • Une étoile (Une étoile est un objet céleste émettant de la lumière de façon autonome, semblable à une énorme boule de plasma comme le Soleil, qui est l'étoile la plus proche de la Terre.) à cinq branches possède un spin 5 car il est suffisant de lui faire faire une rotation de \frac{2\pi}{5}\,.
  • Un objet complètement (Le complètement ou complètement automatique, ou encore par anglicisme complétion ou autocomplétion, est une fonctionnalité informatique...) symétrique, comme une sphère (En mathématiques, et plus précisément en géométrie euclidienne, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La...) par exemple, est invariante par rotation de n'importe quel angle. La définition simplifiée qu'on a donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) est difficile à appliquer dans ce cas mais mathématiquement il est naturel de dire qu'un tel objet possède un spin infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille.).

Remarquons que d'ordinaire, puisqu'une rotation d'angle 2\pi\, est égale à l'identité, il semblerait que tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) objet soit de spin entier car dans le pire des cas un objet devrait toujours être identique à lui-même sous une rotation d'angle 2\pi\,. Pourtant l'analyse mathématique rigoureuse du groupe des rotations montre une structure subtile qui permet à certains objets d'avoir un spin demi-entier. Pour de tels objets, faire un tour complet sur eux-mêmes n'est pas suffisant pour les faire revenir à leur position de départ mais il est nécessaire d'effectuer une rotation d'angle 4\pi\,. On ne rencontre pas de tels objets à notre échelle mais dans le monde (Le mot monde peut désigner :) microscopique ils sont courants. On les appelle des fermions, dont un exemple bien connu est l'électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un...), qui possède précisément un spin \frac{1}{2}\,.

De façon plus rigoureuse, comme on va le voir plus bas, l'analyse du comportement des objets sous l'effet des rotations nécessite de prendre en compte la structure mathématique de groupe formé par celles-ci. À un objet se transformant sous les rotations est alors associée une représentation de groupe. Deux objets ayant des propriétés de symétrie similaires seront donc associés à des représentations équivalentes du groupe des rotations. De ce point (Graphie) de vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et l'interprétation des rayonnements lumineux.), le spin n'est rien d'autre qu'un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) qui permet de classifier les différentes représentations inéquivalentes du groupe des rotations (on appelle cela les représentations irréductibles). C'est ainsi que l'on peut dire qu'une particule de spin 2 telle que le graviton (Le graviton est une particule élémentaire hypothétique qui transmettrait la gravité dans la plupart des systèmes de gravité quantique. Il serait donc le quantum de la force gravitationnelle....) (voir ci-dessous) possède la même symétrie du point de vue des rotations qu'une dame de pique car tous deux se transforment dans des représentations équivalentes.

Spin des particules usuelles

Le spin d'une particule est un nombre entier ou demi-entier positif, noté s\,.

Bien que lié aux phénomènes de quantification du moment angulaire (En physique, le moment angulaire ou moment cinétique est la grandeur physique qui joue un rôle analogue à la quantité de mouvement dans le cas des rotations. Comme le moment angulaire dépend du choix de...), le spin est bel (Nommé en l’honneur de l'inventeur Alexandre Graham Bell, le bel est unité de mesure logarithmique du rapport entre deux puissances, connue pour exprimer la puissance du son. Grandeur sans dimension en dehors du...) et bien une propriété intrinsèque des particules. En particulier, il ne correspond à aucun mouvement de rotation hypothétique de ces particules.

Les particules possédant un spin demi-entier s'appellent fermions, celles possédant un spin entier s'appellent bosons. Plus spécifiquement :

  • Spin 0 : le boson de Higgs (Le boson de Higgs est une particule élémentaire dont l'existence a été proposée en 1964 par Gerry Guralnik, C.R. Hagen, et Tom Kibble; Robert Brout et François Englert (et nommé « boson scalaire...), particule hypothétique, non encore découverte expérimentalement.
  • Spin 1/2 : l'électron, le positron (En physique des particules, le positron ou positon est l'anti-particule associée à l'électron. Il possède une charge électrique de +1 (contre -1 pour l'électron), le...), le proton (Le proton est une particule subatomique portant une charge électrique élémentaire positive.), le neutron (Le neutron est une particule subatomique. Comme son nom l'indique, le neutron est neutre et n'a donc pas de charge électrique (ni positive, ni négative). Les neutrons, avec les...), les neutrinos, les quarks, etc.
  • Spin 1 : le photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent,...), les bosons W± et Z0 vecteurs de l'interaction (Une interaction est un échange d'information, d'affects ou d'énergie entre deux agents au sein d'un système. C'est une action réciproque qui suppose l'entrée en contact de sujets.) faible.
  • Spin 2 : le graviton, particule hypothétique vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut...) de la gravitation (La gravitation est une des quatre interactions fondamentales de la physique.).

Le spin de particules composées, comme le proton, le neutron, le noyau atomique (Le noyau atomique désigne la région située au centre d'un atome constituée de protons et de neutrons (les nucléons). La taille du noyau (10-15 m) est considérablement plus petite que celle de l'atome (10-10 m) et...) ou l'atome (Un atome (grec ancien ἄτομος [atomos], « que l'on ne peut diviser ») est la plus petite partie...), est constitué des spins des particules qui les composent auxquels s'ajoute le moment angulaire des particules élémentaires l'une par rapport à l'autre.

Historique

La notion de spin a été introduite par Pauli en décembre 1924 [PA25] pour l'électron afin d'expliquer un résultat expérimental qui restait incompréhensible dans le cadre naissant de la mécanique quantique (Fille de l'ancienne théorie des quanta, la mécanique quantique constitue le pilier d'un ensemble de théories physiques qu'on regroupe sous l'appellation générale de physique quantique. Cette dénomination s'oppose à celle de physique...) non relativiste : l'effet Zeeman (L'effet Zeeman est un phénomène physique, découvert par Pieter Zeeman, physicien néerlandais qui reçut le prix Nobel de physique en 1902.) anormal. L'approche développée (En géométrie, la développée d'une courbe plane est le lieu de ses centres de courbure. On peut aussi la décrire comme l'enveloppe de la famille des droites normales à la courbe.) par Pauli consistait à introduire de façon ad-hoc le spin en ajoutant un postulat supplémentaire aux autres postulats de la mécanique (Dans le langage courant, la mécanique est le domaine des machines, moteurs, véhicules, organes (engrenages, poulies, courroies, vilebrequins, arbres de transmission,...) quantique non relativiste (équation de Schrödinger, etc.).

L'introduction du spin permet de comprendre également d'autres effets expérimentaux, comme les doublets des spectres des métaux alcalins, ou le résultat de l'expérience de Stern et Gerlach.

En 1928, Paul Dirac construisit une version quantique et relativiste de l'équation de Schrödinger (L'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en physique quantique non-relativiste....), appelée aujourd'hui équation de Dirac (L'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron.), qui permet de décrire les fermions de spin 1/2. Le spin y apparaît comme une propriété dérivée de son équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement pour poser le problème de leur identité. Résoudre l'équation consiste à déterminer toutes les façons de donner à certaines des...), et non comme un postulat supplémentaire à rajouter de façon ad-hoc.

Enfin, c'est en théorie quantique des champs (La théorie quantique des champs est l'application des concepts de la physique quantique aux champs. Issue de la mécanique quantique relativiste, dont l'interprétation comme...) que le spin montre son caractère le plus fondamental. L'analyse du groupe de Poincaré effectuée par Wigner en 1939 montra en effet qu'une particule est associée à un champ (Un champ correspond à une notion d'espace défini:) quantique, opérateur (Le mot opérateur est employé dans les domaines :) qui se transforme comme une représentation irréductible du groupe de Poincaré. Ces représentations irréductibles se classent par deux nombres réels positifs : la masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte)...) et le spin.

" Rotation propre "

Historiquement, le spin a d'abord été interprété par Uhlenbeck et Goudsmit en septembre 1925[1] [UG25] comme étant un moment cinétique (Le mot cinétique fait référence à la vitesse.) intrinsèque, c'est-à-dire comme si la particule " tournait sur elle-même ". Cette vision classique d'une " rotation propre " de la particule est en fait trop naïve ; en effet :

  • si la particule est ponctuelle, la notion de rotation propre autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres...) de son axe est tout simplement dénuée de sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du...) physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la physique...).[2]
  • si la particule n'est pas ponctuelle, alors la notion possède un sens, mais on se heurte dans ce cas à une autre difficulté.[3] Supposons par exemple que la particule soit un électron, modélisé comme étant un corps sphérique de rayon a. On obtient une estimation du rayon a en écrivant que l'énergie de masse (En 1905, Albert Einstein postule que la masse est une des formes que peut prendre l'énergie. Tout système au repos, de masse m, possède ainsi une énergie de masse E donnée par la célèbre relation...) de l'électron est de l'ordre de grandeur de son énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) potentielle électrostatique (L'électrostatique traite des charges électriques immobiles et des forces qu'elles exercent entre elles, c’est-à-dire de leurs interactions.), soit :
m c^2 \ \sim \ \frac{e^2}{4 \pi \epsilon_0 a} \quad \Longrightarrow \quad a \ \sim \ \frac{e^2}{4 \pi \epsilon_0 m c^2}
La valeur numérique (Une information numérique (en anglais « digital ») est une information ayant été quantifiée et échantillonnée,...) de ce " rayon classique " de l'électron est : a \ \simeq \ 10^{-15} m. Si l'on attribue alors à cet électron un moment cinétique égal à \hbar /2, on obtient pour un point de l'équateur une vitesse (On distingue :) v vérifiant :
m a v \ = \ \frac{\hbar}{2} \quad \Longrightarrow \quad v \ = \ \frac{\hbar}{2 m a} \ \sim \ \frac{2 \pi \epsilon_0 \hbar c^2}{e^2}
La valeur numérique vaudrait : v \ \simeq \ 6 \ 10^{+10} m/s, donc la vitesse serait supérieure à la vitesse de la lumière (La vitesse de la lumière dans le vide, notée c (pour « célérité », la lumière se manifestant macroscopiquement comme un...) dans le vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.), ce qui pose des problèmes avec la théorie de la relativité (Cet article traite de la théorie de la relativité à travers les âges. En physique, la notion de relativité date de Galilée. Les travaux d'Einstein en ont fait un important champ d'étude,...) restreinte.

Interprétation physique du spin

Opérateur spin

En mécanique quantique, le spin est un opérateur vectoriel hermitien (Plusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite.) comportant trois composantes, notées usuellement \hat{S}_x, \, \hat{S}_y et \hat{S}_z par référence aux trois axes de coordonnées cartésiennes de l'espace physique. Ces composantes vérifient les relations de commutations  :

\left[ \, \hat{S}_i \, , \ \hat{S}_j \, \right] \ = \ i \  \hbar \ \epsilon_{ijk} \ \hat{S}_k

εijk est le symbole de Levi-Civita (Le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un indicateur antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker :). Ces relations de commutations sont analogues à celles découvertes en novembre 1925 par Born, Heisenberg et Jordan pour les composantes du moment cinétique orbital : \left[ \, \hat{L}_i \, , \ \hat{L}_j \, \right] \ = \ i \  \hbar \ \epsilon_{ijk} \ \hat{L}_k

Par analogie avec les résultats obtenus pour le moment cinétique orbital (Le moment cinétique orbital est un concept de la mécanique quantique. C'est un cas particulier de moment cinétique quantique.) (ou plus généralement pour un moment cinétique quantique), il existe pour l'opérateur spin une base de vecteurs propres notés | s,ms > , où s est entier ou demi-entier, et ms est un entier ou demi-entier prenant l'une des 2s + 1 valeurs - \, s \le m_s \le s, tels que :

\hat{S}^2  \ | s,m_s \rangle \ = \ s(s+1) \, \hbar^2 \ | s,m_s \rangle
\hat{S}_z  \ | s,m_s \rangle \ = \ m_s \, \hbar \ | s,m_s \rangle

Spin 1/2 - matrices de Pauli

Pour une particule de spin 1/2 comme l'électron, on a s = 1 / 2, donc 2s + 1 = 2 : il existe seulement deux états de spin distincts, caractérisés par m_s = \pm 1/2.

On note souvent les deux états propres correspondant : |+\rangle et |-\rangle, ou encore symboliquement : |\uparrow\rangle et |\downarrow\rangle.

Pauli a introduit trois matrices 2 x 2, notées \hat{\sigma}_i, \ i = 1,2,3 telles que l'opérateur de spin s'écrive :

\hat{S}_i  \ = \ \frac{\hbar}{2} \ \hat{\sigma}_i

Ces trois matrices de Pauli s'écrivent explicitement :

\hat{\sigma}_x  \ = \  \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ ; \quad \hat{\sigma}_y  \ = \  \begin{pmatrix} 0 & - \ i \\ i & 0 \end{pmatrix} \ ; \quad \hat{\sigma}_z  \ = \  \begin{pmatrix} 1 & 0 \\ 0 & - \ 1 \end{pmatrix}

Elles satisfont les relations de commutation :

\left[ \, \hat{\sigma}_i \, , \ \hat{\sigma}_j \, \right] \ = \  2 \ i \ \epsilon_{ijk} \ \hat{\sigma}_k

Représentation géométrique du spin par une sphère de Riemann (En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière à ce que...)

Un état quantique (En mécanique quantique, l'état d'un système décrit tous les aspects du système physique. Il est représenté par un objet mathématique qui donne le maximum d'information possible...) quelconque d'une particule de spin 1/2 peut s'exprimer sous la forme générale :

|\nearrow\rangle = a |\uparrow\rangle + b  |\downarrow \rangle

(a et b étant deux nombres complexes). Cette formule exprime une superposition (En mécanique quantique, le principe de superposition stipule qu'un même état quantique peut possèder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de mouvement etc.)) des deux états propres.

Selon les règles de la mécanique quantique, l'état quantique représenté par |\psi\rangle et \alpha |\psi\rangle sont physiquement rigoureusement les mêmes. Par conséquent, on peut également exprimer l'état général d'une particule de spin 1/2 par:

|\nearrow\rangle = |\uparrow\rangle + \frac ba |\downarrow \rangle
Représentation géométrique d'un état de spin 1/2 par une sphère de Riemann
Représentation géométrique d'un état de spin 1/2 par une sphère de Riemann

L'état de spin 1/2 est donc entièrement caractérisé par un nombre complexe u = \frac ba. Ce rapport pouvant être infini quand a = 0 (état pur de spin "down"), il est nécessaire d'utiliser une sphère de Riemann pour représenter ce rapport, la sphère de Riemann étant une extension du corps des complexes avec l'infini.

Selon cette représentation, tout état de spin 1/2 trouve une représentation géométrique (voir figure ci-contre). Le vecteur passant par l'origine et pointant sur la projection (La projection cartographique est un ensemble de techniques permettant de représenter la surface de la Terre dans son ensemble ou en partie sur la surface plane d'une carte.) du complexe u sur la sphère de Riemann donne une visualisation géométrique de l'état de spin 1/2 comme étant une direction dans l'espace.

Bien que semblant a priori purement mathématique, cette représentation de l'état de spin comme étant une direction dans l'espace possède une certaine pertinence. Notamment, on peut retrouver simplement à l'aide de cette représentation géométrique la probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de...) d'obtenir l'état |\uparrow\rangle et |\downarrow\rangle lors d'une mesure de l'état |\nearrow\rangle (il ne faut pas perdre de vue que l'état mesuré d'un état de spin 1/2 sera toujours soit |\uparrow\rangle soit |\downarrow\rangle).

Moment magnétique (En magnétostatique, soit une distribution de courants permanents à support compact de volume V.) de spin

Définition. Facteur de Landé

Au moment cinétique orbital d'une particule de charge (La charge utile (payload en anglais ; la charge payante) représente ce qui est effectivement transporté par un moyen de transport donné, et qui donne lieu à...) q et de masse m est associé un moment magnétique orbital :

\vec{\mu}_L \ = \ \frac{q}{2 m} \ \vec{L}

Le facteur q / 2m est appelé rapport gyromagnétique. De même, on associe à une particule de charge q, de masse m, et de spin donné un moment magnétique de spin :

\vec{\mu}_S \ = \ g \ \frac{q}{2 m} \ \vec{S}

g est un nombre sans dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une pièce de révolution.), appelé facteur de Landé (1921). Ce nombre varie selon la nature de la particule : on a approximativement g = 2 pour l'électron, g = 5,586 pour le proton, et g=- \, 3,826 pour le neutron.[4]

Magnéton de Bohr

Pour l'électron, on a les valeurs suivantes : s= \hbar /2 et g = 2,002 ; on introduit alors le " quantum magnétique  " suivant, appelé magneton de Bohr :\mu_{B} = \frac{e \hbar}{2 m_e}

Moment magnétique anormal de l'électron

L'équation de Dirac prédit pour l'électron un facteur de Landé exactement égal à : g = 2. Or, la valeur expérimentale ( En art, il s'agit d'approches de création basées sur une remise en question des dogmes dominants tant sur le plan formel, esthétique, que sur le plan culturel et...) admise en 2005 vaut :

g \ \simeq \ 2,002 \ 319 \ 304 \ 373 \ 7

Il existe donc un écart, décelé pour la première fois en 1947 dans la structure hyperfine de l'hydrogène (L'hydrogène est un élément chimique de symbole H et de numéro atomique 1.) et du deutérium (Le deutérium (symbole 2H ou D) est un isotope naturel de l'hydrogène. Il possède 1 proton et 1 neutron. Son nombre de masse est 2.) [KN02] : on parle alors du moment magnétique anormal de l'électron. La théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur l’observation ou...) quantique des champs du modèle standard permet de rendre compte de cette anomalie avec une très grande précision.

Notes et références

  1. Un problème de facteur 2 dans la structure fine du spectre de l'hydrogène, identifié par Heisenberg, fut résolu en décembre 1925 avec l'aide d'Einstein, sous l'impulsion de Bohr. Ce dernier demanda à deux physiciens hollandais de publier le résultat en urgence : S. Goudsmit et G.E. Uhlenbeck ; Nature 117 (1926) 264.
  2. Par définition, l'axe de rotation d'un objet est le lieu de points de cet objet qui restent immobiles. Si la particule est ponctuelle, son axe propre est sur la particule, donc celle-ci est immobile.
  3. Il faudrait aussi expliquer quelles sont les forces internes qui assurent le cohésion de cet électron étendu. Ce problème a occupé un grand nombre de théoriciens dans les années 1895 à 1930, avant que l'électrodynamique quantique (L'électrodynamique quantique relativiste est une théorie physique ayant pour but de concilier l'électromagnétisme avec la mécanique quantique en utilisant un...) et son électron ponctuel (En géométrie, un point est le plus petit élément constitutif de l'espace de travail.) ne deviennent bien établies.
  4. Bien que le neutron ait une charge q = 0, on lui attribue ici un facteur de Landé correspondant au moment magnétique de spin calculé pour la valeur q = e, afin de le comparer à ceux de l'électron et du proton.
Page générée en 0.554 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique