La chronologie suivante montre les étapes clés et les contributeurs dans le développement de la mécanique quantique et la chimie quantique.
Date | Personne | Contribution |
1771 | Luigi Galvani | Note que les muscles des grenouilles mortes s'agitent lorsqu'elles sont touchées par une décharge, qu'il appela électricité animale. |
1800 | Alessandro Volta | Invente la pile voltaïque, ou « batterie », dans le but de contrer la théorie de Galvani sur l'électricité animale. |
1838 | Michael Faraday | Utilisant la batterie de Volta, il découvrit les rayons cathodiques lorsque, durant une expérience, il fit passer du courant au travers un tube de verre contenant de l'air raréfié et aperçu un arc lumineux étrange partant de l'anode (électrode négative) et se terminant à la cathode (électrode positive). |
1852 | Edward Frankland | Initia la théorie de la valence en proposant que chaque élément chimique posséda une « puissance combinatrice », e.g. certains éléments comme l'azote tend à se combiner à trois autres éléments (e.g. NO3) alors que d'autres peuvent se combiner avec cinq autres éléments (e.g. PO5), et que chaque élément tend à remplir son pouvoir de combinaison (valence) afin de satisfaire ses affinités. |
1859 | Gustav Kirchhoff | Posa le problème du corps noir, c'est-à-dire comme l'intensité du rayonnement électromagnétique émis par un corps noir dépend de la fréquence de la radiation et de la température du corps. |
1877 | Ludwig Boltzmann | Suggéra que les états d'énergie d'un système physique peuvent être discrets. |
1879 | William Crookes | Montra que les rayons cathodiques, contrairement aux rayons lumineux, pouvaient être courbés dans un champ magnétique. |
1885 | Johann Balmer | Découvrit que les quatre bandes visibles du spectre de l'hydrogène pouvaient être assignés à des entiers dans une série. |
1888 | Johannes Rydberg | Modifia la formule de Balmer afin d'inclure d'autres séries de bandes afin de donner la formule de Rydberg. |
1891 | Alfred Werner | Proposa une théorie de l'affinité et de la valence dans laquelle l'affinité est une force attractive issue du centre de l'atome agissant uniformément à partir de toutes les parties de la surface sphérique de l'atome central. |
1892 | Heinrich Hertz | Montra que les rayons cathodiques pouvaient traverser de fines feuilles d'or et produire une luminosité appréciable sur du verre située entre elles. |
1896 | Henri Becquerel | Découvrit la radioactivité, processus durant lequel, en raison de la désintégration nucléaire, certains éléments chimiques ou isotopes émettent spontanément un des trois types d'entités énergétiques : les particules alpha (charge positive), les particules bêta (charge négative), et les particules gamma (charge neutre). |
1897 | Joseph John Thomson | Montra que les rayons cathodiques se courbaient sous l'influence conjuguée d'un champ électrique et d'un champ magnétique et afin de l'expliquer il suggéra que ces rayons cathodiques sont des particules électriques subatomiques chargées négativement ou « corpuscules » (électrons) arrachés de l'atome ; et en 1904, proposa le modèle de plum pudding dans lequel les atomes sont des masses amorphes positivement charges (pudding) dans lesquelles des électrons négativement chargés (raisins) sont dispersés sous la forme d'anneaux tournants non aléatoires. |
1900 | Max Planck | Suggéra, afin d'expliquer le rayonnement du corps noir, que l'énergie électromagnétique ne pouvait être émise que sous forme quantifiée, i.e. que l'énergie pouvait être seulement multiple d'une unité élémentaire E = hν, dans laquelle h est la constante de Planck et ν la fréquence de radiation. |
1902 | Gilbert N. Lewis | Afin d'expliquer la règle de l'octet (1893), développa la théorie de l'atome cubique dans laquelle les électrons, sous formes de points, se positionnaient aux sommets d'un cube et suggéraient que les liaisons covalentes simples, doubles ou triples se produisaient lorsque deux atomes étaient maintenus ensemble par plusieurs paires d'électrons (une pour chaque liaison) localisées entre les deux atomes (1916). |
1904 | Richard Abegg | Remarqua le fait que la différence entre la valence maximale positive, comme par exemple +6 pour H2SO4, et la valence maximale négative, comme par exemple -2 pour H2S, d'un élément tend à être huit (loi d'Abegg). |
1905 | Albert Einstein | Afin d'expliquer l'effet photoélectrique (1839), i.e. que la lumière arrivant sur certains matériaux pouvaient éjecter des électrons de celui-ci, postula à partir de l'hyporthèse quantique de Planck que la lumière elle-même était constituée de particules individuelles quantiques (photons). |
1907 | Ernest Rutherford | Afin de tester le modèle de plum pudding (1904), tira des particules alpha positivement chargées sur une feuille d'or et remarqua que certaines repartaient en arrière, montrant ainsi que les atomes possèdent un noyau atomique de petite taille et chargé positivement en leurs centres. |
1913 | Niels Bohr | Afin d'expliquer la formule de Rydberg (1888), qui modélisait correctement le spectre d'émission lumineuse de l'atome d'hydrogène, supposa que les électrons négativement chargés tournaient autour d'un noyau positivement chargé à certaines distances quantifiées fixes et que chacune de ces « orbites sphériques » possédait une énergie associée telle que les mouvements électroniques entre les orbites nécessitent des émissions ou des absorptions quantifiées d'énergie. |
1916 | Arnold Sommerfeld | Afin de prendre en compte l'effet Zeeman (1896), i.e. que les bandes spectrales d'absorption ou d'émission atomique changent lorsque la lumière est d'abord passée au travers d'un champ magnétique, suggéra qu'il put y avoir des « orbitales elliptiques » dans les atomes en plus des orbitales sphériques. |
1919 | Irving Langmuir | Se basant sur le travail de Lewis (1916), proposa le terme de « covalence » et postula que la formation d'une liaison covalente de coordination lorsque les électrons d'une paire proviennent du même atome. |
1922 | Stern et Gerlach | Proposèrent l'expérience de Stern et Gerlach, durant laquelle les valeurs discrètes de moments angulaires pour des atomes à l'état fondamental sont détectées par passage dans un champ magnétique inhomogène, conduisant à la découverte du spin de l'électron. |
1923 | Louis de Broglie | Postula que les électrons en mouvement sont associés avec des ondes dont les longueurs d'ondes sont données par la constante de Planck h divisée par la quantité de mouvement mv = p de l'électron : λ = h / mv = h / p. |
1925 | Friedrich Hund | Mit en lumière la règle de multiplicité maximale qui indique que lorsque les électrons sont ajoutés successivement à un atome, les niveaux ou orbitales sont occupées par un électron seul tant que c'est possible avant que appariement d'électrons avec spins opposés et fait ainsi la distinction entre les électrons internes dans les molécules restant dans les orbitales atomiques et les électrons de valence se plaçant dans les orbitales moléculaires impliquant les deux noyaux. |
1925 | Wolfgang Pauli | Formula le principe d'exclusion stipulant que deux fermions identiques ne peuvent occuper le même état quantique simultanément. |
1926 | Erwin Schrödinger | Utilisa le postulat d'équivalence onde-matière de de Broglie pour développer une équation d'onde représentant mathématiquement la distribution d'une charge d'un électron sur l'espace, symétrique sphériquement ou proéminente selon certaines directions, i.e. les liaisons de valence dirigées, donnant les valeurs corrects pour les bandes spectrales de l'atome d'hydrogène. |
1927 | Walter Heitler | Utilisa l'équation de Schrödinger pour montrer comment les fonctions d'ondes de deux atomes d'hydrogène se rejoignaient, avec des termes plus, moins et d'échange, pour former une liaison covalente. |
1927 | Robert Mulliken | Travailla à développer, avec Hund, une théorie de l'orbitale moléculaire dans laquelle les électrons étaient assignés à des états s´étendant sur une molécule dans son ensemble et en 1932 introduisit les terminologies d'orbitales moléculaires, comme liaison σ, liaison π, et liaison δ. |
1928 | Linus Pauling | Éclaira la nature de la liaison chimique pour laquelle il utilisa le modèle de liaison covalente quantique de Heitler pour montrer la base quantique de tous les types de structures moléculaires et de liaisons et suggéra que les différents types de liaisons dans les molécules pourraient être égalisées par une permutation rapide des électrons, processus appelé résonance (1931), de tels hybrides de résonance contenant des contributions des différentes configurations électroniques possibles. |
1929 | John Lennard-Jones | Introduisit l'approximation de la combinaison linéaire d'orbitales atomiques pour le calcul des orbitales moléculaires. |
1932 | Werner Heisenberg | Appliqua la théorie des perturbations au problème à deux électrons et montra que la résonance provenant de l'échange électronique pouvait expliquer les forces d'échange. |
1938 | Charles Coulson | Fit le premier calcul précis d'une fonction d'onde d'orbitale moléculaire avec le dihydrogène. |
1951 | Clemens Roothaan et George Hall | Établirent les équations de Roothaan-Hall, donnant une base solide aux méthodes d'orbitales moléculaires. |