L'horizon cosmologique ou horizon cosmique est un terme d'astronomie qui désigne la limite de l'univers observable depuis un point donné (en général la Terre). Selon le contexte, il correspond soit à la limite d'où un rayonnement électromagnétique peut être issue, ou alors la limite d'où un signal de quelque nature que ce soit (neutrinos ou ondes gravitationnelles) peut être reçue. En pratique, les moyens observationnels actuels sont pour l'heure (2007) incapables de détecter des neutrinos ou ondes gravitationnelles primordiales. Plus généralement, un modèle cosmologique donné peut ou non contenir un tel horizon, c'est-à-dire des régions inaccessibles à l'observation d'un observateur donné.
L'horizon cosmologique est défini par analogie à l'horizon terrestre. De même que la courbure de la terre limite la vision de celle-ci depuis un point fixe sur sa surface, la taille de l'univers et la vitesse de déplacement de la lumière font qu'il est impossible de voir certains objets célestes (galaxies et amas de galaxies dans ce cas) trop éloignés.
L'âge de l'univers est de 13,7 milliards d'années. Si l'univers n'était pas en expansion, un photon atteignant la Terre ne pourrait avoir parcouru plus de 13,7 milliards d'années-lumière. Cependant, du fait de l'expansion de l'univers, l'objet qui a émis ce photon s'est déplacé pendant ce temps et est donc situé aujourd'hui à plus de 13,7 milliards d'années-lumière.
En pratique, les signaux les plus lointains qui nous parviennent, viennent du fond diffus cosmologique. Ce rayonnement emplit tout l'univers, mais la région d'où est issu le rayonnement qui parvient jusqu'à nous est appelé, pour des raisons évidentes, surface de dernière diffusion. Les modèles cosmologiques actuels, basés sur le modèle standard de la cosmologie et les équations de Friedmann indiquent que la surface de dernière diffusion se trouve actuellement (voir ci-dessous) à environ 46 milliards d'années-lumière de l'observateur.
C'est ce chiffre qui est habituellement appelé horizon cosmologique.
Il est en général délicat de définir des distance en cosmologie. Le concept de distance dépend beaucoup du contexte. Ainsi, les notions de distance angulaire (basée sur la taille angulaire d'un objet de taille connue) ou de distance de luminosité (basée sur le flux lumineux reçu d'un objet de luminosité connue) sont-elles différentes. Quand on parle de la taille de l'horizon, on entend distance séparant un observateur donné à l'objet le plus lointain qu'il puisse observé et rapporté à sa position actuelle, c'est-à-dire à l'époque où son temps cosmique est le même que celui de l'observateur. Une des raisons à cela est que les concepts de distance de luminosité ou de distance angulaires sont mal adaptés pour les objets les plus distants observables, la première tendant vers l'infini et l'autre vers 0.
La taille de l'horizon se calcule suivant une formule du type
où c correspond à la vitesse de la lumière, t * et t0 correspondent respectivement à l'époque d'émission du signal le plus distant détectable et l'époque actuelle, et où la fonction z(t) donne le décalage vers le rouge d'un signal reçu aujourd'hui après avoir été émis au temps t. Une façon intuitive d'interpréter ce résultat est de dire qu'un photon parcours la distance
Dans le cadre d'un modèle d'univers homogène et isotrope, on peut décrire celui-ci à l'aide d'une métrique dite de Friedmann-Lemaître-Robertson-Walker. L'élément de longueur associé à cette métrique s'écrit
où a(t) représente la variation temporelle des distances cosmologique (clest le facteur d'échelle) et γij correspond, au facteur a2(t) près, aux coefficients de la métrique des sections spatiales de l'univers. Celles-ci peuvent être euclidiennes, sphériques ou hyperboliques, ce que l'on peut écrire sous la forme compacte
où les coordonnées des sections spatiales sont notées χ, θ et φ. Les deux dernières correspondent aux coordonnées angulaires habituelles des coordonnées sphériques usuelles, alors que χ correspond à une coordonnée radiale qui tient compte de la nature (eucilidienne ou non) des sections spatiales. La fonction s s'écrit
Le paramètre K décrit donc la nature des sections spatiales. Quand K est nul, les sections spatiales sont euclidiennes et la coordonnée χ s'identifie à la coordonnée radiale habituelle (en général notée r).
Dans cette métrique, les objets astrophysique sont essentiellement immobiles, au sens où leurs coordonnées χ, θ, φ ne changent pas au cours du temps (omission faite de leur mouvement propre éventuel, mais celui-ci est négligeable à l'échelle cosmologique). La coordonnée t est appelée temps cosmique. Elle représente le temps mesuré par un objet immobile par rapport aux autres coordonnées. Il est commode d'effectuer un changement de variable, où le temps cosmique est remplacé par une quantité η, appelée temps conforme, selon
Le facteur d'échelle peut alors être exprimé indifféremment en fonction de t ou de η (avec bien sûr des formes fonctionnelles différentes). L'élément de longueur se réécrit alors
La relativité restreinte enseigne que l'élément de longueur associé à la trajectoire d'un photon est nul. Si on considère la trajectoire d'un photon émis en un point dans la direction de l'originie du système de coordonnées, les coordonnées θ et ϕ sont en prime constantes. On a donc immédiatement
Ainsi l'intervalle en terme de temps conforme entre émission et réception du photon correspond à la variation de la coordonnée χ le long de la trajectoire. Un objet situé à la coordonné χ est distant à l'instant t0 de
Pour que cet objet ait pu émettre de la lumière que nous recevons, il faut que l'intervalle en temps conforme Δη entre émission et réception du signal soit égal à χ. La distance qui nous sépare d'un objet dont on reçoit la lumière est donc
En utilisant la formule reliant le temps conforme au temps cosmique, on trouve
l'intégrale étant prise entre les instant d'émission du signal (noté t * ) et de réception, soit aujourd'hui (t0). On a donc
On peut en toute généralité définir le décalage vers le rouge par le rapport entre les distances entre deux galaxies lointaines à une époque donnée et aujourd'hui, selon la formule
écriture qui signifie que l'on relie l'âge de l'univers t à une époque donnée au décalage vers le rouge que l'on observe aujour'hui d'un signal émis à cette époque, cette relation étant pour l'heure indéterminée. Au final, on obtient
Pour calculer cette quantité, il faut connaître la relation z(t), c'est-à-dire la relation entre le décalage vers le rouge de la lumière émise par d'un objet et l'âge de l'univers à l'époque où celui-ci a émis le rayonnement reçu aujourd'hui. En d'autre terme, il faut connaître la relation entre le facteur d'échelle et le temps cosmique. Cette relation est établie par les équations de Friedmann dont c'est précisément l'objet. On trouve alors, sous certaines hypothèse, la relation suivante :
où H0 représente l'actuel taux d'expansion de l'univers (la constante de Hubble) et les différentes quantités Ω correspondent aux paramètres de densité des différentes espèces présentes dans l'univers, à savoir rayonnement et particules de masse nulle (r), matière non relativiste (matière baryonique et matière noire, m) et constante cosmologique (Λ) mesurés aujourd'hui.
Partant de l'expression
on effectue un changement de variable, où l'on remplace le temps t par la facteur d'échelle a, en utilisant la formule donnant le taux d'expansion H de l'univers,
d'où
On obtient alors
le taux d'expansion étant alors vu non pas comme une fonction du temps t, mais du facteur d'échelle a. On définit ensuite x comme le facteur d'échelle normalisé à aujourd'hui, à savoir
En notant H0 la valeur actuelle du taux d'expansion, on a
la borne d'intégration correspondant à la valeur de x à l'époque t * . Les équations de Friedmann permettent de relier le taux d'expansion aux densités d'énergie ρidu contenu matériel de l'univers selon (voir Équations de Friedmann)
la constante κ étant la constante d'Einstein. Les densité d'énergie des espèces concernées sont des fonction du temps, et donc du facteur d'échelle. Pour une espèce dont le rapport de la pression à la densité d'énergie est wi, la densité varie en fonction du facteur d'échelle selon (voir Équation de conservation (cosmologie))
Sans perte de généralité, on peut donc écrire les densités fonction des densité d'énergie actuelles
la quantité wi étant une constante ou une fonction de temps (ou de x, ce qui revient au même).
En définissant la densité critique actuelle par
il vient, en divisant par
les quantité
On a ainsi
pour finalement obtenir
La quantité D recherchée s'exprime donc selon
Dans le cas où le contenu matériel de l'univers se réduit à de la radiation (pression égale à un tiers de la densité d'énergie, wr = 1 / 3), de la matière non relativiste (pression négligeable, wm = 0) et une constante cosmologique (pression opposée à la densité d'énergie, w = − 1), alors on retrouve bien
Le modèle standard de la cosmologie bâti à partir de l'ensemble des observations cosmologiques (et compatibles avec elles) indique que la densité d'énergie sous forme de rayonnement est négligeable devant les autres formes (matière et énergie noire), ce qui équivaut à dire que le terme
La quantité c / H0 est appelée rayon de Hubble. Avec la valeur communément admise de 70 kilomètres par seconde et par mégaparsec pour la constante de Hubble, la rayon de Hubble est d'environ 14 milliards d'années lumière[1]. Le terme dans l'intégrale ne peut être calculé analytiquement, mais une intégration numérique peut être effectuée sans difficulté en prenant pour Ωm la valeur communément admise d'environ 0,3. L'on trouve alors que l'intégrale est légèrement supérieurs à trois, que la borne d'intégration soit de 0 (on considère la distance maximale parcourue par tout signal émis depuis le Big Bang) ou d'un millième (corrspondant à un photon du fond diffus cosmologique, émis lors de la recombinaison. Au final, on retrouve bien la valeur de l'ordre de 45 milliards d'années lumière annoncée plus haut.
Dans le cas où l'univers possède la densité critique et n'est composé que d'une espèce, dont le rapport de la pression à la densité d'énergie est w, on a
Cette intégrale peut être évalué dans plus cas
On a immédiatement
l'égalité ci-dessus étant approximativement car on n'a pas tenu compte de la valeur exacte de la borne inférieure (prise à 0 ici alors qu'elle pourrait être prise à une valeur légèrement positive). Dans ce cas, la taille de l'horizon correspond exactement au rayon de Hubble.
On a désormais
Dans ce cas, la taille de l'horizon correspond exactement au double du rayon de Hubble.
Plus généralement, on a, dans le cas où w est constant et supérieur à − 1 / 3,
D'une manière générale, plus l'équation d'état est " dure " (c'est-à-dire w grand), plus la taille de l'horizon est faible en unité du rayon de Hubble. Ceci peut être rendu plus explicite en utilisant la relation existant entre âge de l'univers t0et rayon de Hubble. Les équations de Friedmann indiquent que
En combinant ces deux derniers résultats, il vient
Ce résultat tend vers ct0 quand w tend vers l'infini. Cela s'interprète par le fait que cette limite correspond en fait au cas idéalisé où la matière tend à être incompressible (une variation de pression arbitrairement grande donnant lieu à une petite variarion de densité, ce qui est le cas si P = wρ est grand car alors
L'univers de Milne correspond à un espace vide de matière. Dans ce cas, tous les paramètres de densité sont nuls, ce qui formellement, du point de vu des équations de friedmann, peut s'interpréter comme un univers ayant la densité critique et un paramètre d'équation d'état w égal à -1/3. Il vient
La primitive à calculer donne un logarithme. Il faut ici prendre soigneusement en compte la valeur de la borne inférieure. Si elle est nulle (
Dans le cas où le paramètre de l'équation d'état est inférieur à -1/3, l'intégrale diverge également pour une borne inférieure nulle
Il n'y a donc pas d'horizon cosmologique dans un tel espace, et en particulier pour l'univers de de Sitter.
Ces résultats, en particulier le fait que l'univers possède un horizon quand le paramètre de l'équation d'état w est toujours supérieur à -1/3 s'avère être un cas particulier des théorèmes sur les singularités de Stephen Hawking et Roger Penrose. La contrainte imposée à w est en effet équivalent à la condition forte sur l'énergie, supposée pour permettre la validité de ces théorèmes. Une autre conséquence est que l'univers est alors, dans le cadre de la relativité générale, nécessairement issu d'une singularité gravitationnelle[2]. Il est cependant relativement avéré aujourd'hui que la condition forte sur l'énergie n'a pas forcément été respectée dans l'univers primordial (voir ci-dessous). Dans ce cadre, le fait que l'univers observable s'étende sur une région finie ne préjuge pas du fait qu'il soit issu d'une singularité.
En observant l'univers le plus loin possible dans deux directions opposées, on voit des régions séparées du double de la taille de l'horizon. Ces deux régions n'ont par définition pas eu la possibilité de communiquer entre elles. Il serait dans ce cas logique de s'attendre à ce que ces régions possèdent des propriétés différentes. Observationnellement il n'en est rien. Ce fait observationnel est appelé du nom de problème de l'horizon. La solution au problème de l'horizon s'obtient en considérant un scénario dans lequel la taille de l'univers observable (délimité par la limite de la surface de dernière diffusion, et en tenant compte de la borne inférieure d'intégration non nulle, 1 / (1 + z * ) ne correspondant pas du tout à la taille réelle de l'horizon, considérée en prenant une borne d'intégration nulle (ou arbitrairement petite, si l'on considère par exemple que les lois dela physique telles que nous les connaissons commencent à être valable au sortir de l'ère de Planck). Pour ce faire, l'on est amené à considéré un scénario où l'évolution du taux d'expansion de l'univers est significativement différentes à des époques anciennes (correspondant aux petites valeurs de x dans l'intégrale). Les scénarios sont amenés alors à considérer des situations où l'expression