Groupe des classes d'idéaux - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Démonstrations

Décors

Le cas illustré est celui où K = Q [√17]. La figure représente KR. Ici r1 est égal à 2 et r2 à 0. Les points gris sont les images de l'anneau des entiers par Σ. Ils sont tous combinaisons linéaires à coefficients entiers des images de 1 et ω = 1/2(1 + √17). La zone bleue est celle contenant les points d'image inférieure à 4 par NR.

Ici Q désigne le corps des nombres rationnels, K une extension finie de Q de degré d et C le corps des nombres complexes. L'anneau étudié, noté OK est la fermeture intégrale de K, c'est-à-dire l'ensemble des entiers algébriques contenu dans K. C'est un anneau de Dedekind et tout idéal se décompose de manière unique en un produit d'idéaux premiers. Ce résultat s'obtient en adjoignant des idéaux alors appelés fractionnaires, pour obtenir une structure de groupe. Ces propriétés sont analysées dans l'article détaillé.

K admet un élément primitif noté ici ζ, c'est-à-dire un nombre tel que tout élément de K s'exprime comme combinaison linéaire des puissance de ζ, à coefficients dans Q. Son polynôme minimal P(X) est par définition irréductible. Dans ce contexte, K est le corps de rupture de ζ, ce qui signifie que l'on peut considérer K comme le quotient de l'anneau des polynômes Q[X] par l'idéal maximal engendré par P(X). L'élément ζ est alors exactement égal à la classe de X dans K. Le polynôme P(X) n'admet pas de racine multiple car il est irréductible (cf corps parfait). Considéré comme un polynôme à valeurs dans C, P(X) admet d différentes racines si d est la dimension de K, ou encore le degré de P(X). Il existe d plongements de K dans C, le terme plongement désigne ici un morphisme de corps, nécessairement injectif. Chaque plongement associe à ζ une racine du polynôme P(X). Si, par exemple le polynôme P(X) est égal à X3 - 2, alors les différentes images possibles de ζ sont 21/3, j.21/3 et jc.21/3, ici j désigne la racine cubique de l'unité à composante imaginaire strictement positive et l'indice c, appliqué à un nombre complexe, son conjugué. On note σ1, ..., σd les d différents plongements de K dans C.

Il est déjà possible de remarquer que ces plongements ne sont pas tous de même nature. Si l'image de ζ est réelle, alors le plongement est à valeur dans R. Si elle est complexe alors il existe un autre plongement qui associe à ζ le complexe conjugué. La nature de ses plongements modifie le comportement de la norme, si le plongement est à valeurs complexes, on se retrouve dans une configuration analogue au premier cas étudié dans le paragraphe Principe de la méthode. S'il est à valeurs réelles, c'est le deuxième cas.

Comme, pour chaque plongement à valeurs complexes l'application conjuguée est aussi un plongement, le nombre de plongements complexes est paire. On note r1 le nombre de plongements réels et 2.r2 le nombre de plongements complexes. On ordonne l'indexation des plongements de la manière suivante : si i varie entre 1 et r1, le plongement est réel, puis, le plongement d'indice r1 + j si j varie de 1 à r2 possède comme conjugué r1 + r2 + j.

L'ensemble KR désigne l'espace vectoriel Rr1 x Cr2 et Σ le morphisme de Q algèbre suivant :

\Sigma : \quad \begin{align}\mathbb K \ & \longrightarrow \mathbb K_{\mathbb R} = \mathbb R^{r_1} \times \mathbb C^{r_2} \\ \alpha \ & \longrightarrow \Sigma(\alpha)= \big(\sigma_1(\alpha),\cdots ,\sigma_{r_1 + r_2}(\alpha)\big) \end{align}

On définit de même une fonction NR de KR à valeur dans R par :

\mathcal N_{\mathbb R} : \quad \begin{align}\mathbb K_{\mathbb R} \ & \longrightarrow \mathbb R \\ x \ & \longrightarrow \mathcal N_{\mathbb R}(x)= |x_1|\cdot \; \cdots \; \cdot |x_{r_1}|\cdot |x_{r_1 +1}|^2\cdot \;\cdots \; \cdot |x_{r_1 + r_2}|^2 \end{align} \quad \text{avec}\quad x =(x_1,\cdots,x_{r_1 + r_2})

La norme NR correspond à la moyenne géométrique des différentes valeurs absolues ou modules si la coordonnée est complexe.

Si NK désigne la fonction qui à un élément α de K associe sa norme relative élément de Q, on obtient le diagramme commutatif :

\begin{matrix} & \mathbb K & \xrightarrow{\Sigma}  & \mathbb K_{\mathbb R} \\ \mathcal N_{\mathbb K /\mathbb Q} & \downarrow &  & \downarrow  & \mathcal N_{\mathbb R} \\ & \mathbb Q & \xrightarrow{|\cdot |} & \mathbb R \end{matrix}

En effet, la norme arithmétique d'un élément de K est égale au coefficient constant de son polynôme minimal, autrement dit au produit de toutes le racines de son polynôme minimal, s'il est considéré comme à valeurs complexes. On munit KR de la norme géométrique suivante :

\|\cdot\| : \quad \begin{align}\mathbb K_{\mathbb R} \ & \longrightarrow \mathbb R_+ \\ x \ & \longrightarrow \|x\|= |x_1| + \cdots + |x_{r_1}| + 2|x_{r_1 +1}|+\cdots +2|x_{r_1 + r_2}| \end{align}

Le rôle du coefficient 2 apparaît clair dans le cas des entiers quadratiques, le domaine fondamental d'un idéal y est égal à son discriminant si l'anneau est totalement réel (les éléments du groupe de Galois sont à valeur dans R) et à la moitié du discriminant sinon. Le coefficient 2 permet ici d'obtenir une relation simple entre le volume fondamental et le discriminant d'un idéal.

Le discriminant d'une forme bilinéaire dans un Z-module sur un anneau correspond au déterminant d'une matrice qui la représente. Comme les endomorphismes inversibles ont un déterminant aussi inversible et donc égal à +/-1, un changement de base ne modifie pas le discriminant. Ce terme est aussi appliqué à un anneau d'entiers algébriques ou à un idéal de l'anneau. La forme bilinéaire associé donne pour valeur du couple (a, b) la trace de l'application linéaire qui à x associe a.b.x, elle porte le nom de forme trace.

Lemmes techniques

  • La majoration suivante est toujours vérifiée :
\forall x \in \mathbb K_{\mathbb R}\quad |\mathcal N_{\mathbb R}(x)|^{1/d}\le \frac{\|x\|}d

Ce lemme signifie simplement que la moyenne géométrique est plus petite que la moyenne arithmétique.

Soit δ une longueur, c'est-à-dire un nombre réel positif :

  • Le volume V d'une boule de KR de rayon δ est donné par la formule suivante :
V = 2^{r_1}\left(\frac{\pi}2 \right)^{r_2} \frac {\delta^d}{d!}

Considérons l'image de OK dans KR, c'est un Z module. Son volume fondamental est la mesure de l'aire composée par l'ensemble des vecteurs de coordonnées toutes prises dans l'intervalle [0, 1[ si la base choisie est une base du module. Comme tout isomorphisme de Z module possède un déterminant inversible dans Z, l'isomorphisme possède un déterminant égal à +/- 1. Ainsi le volume fondamental est indépendant du choix de la base du module. Ce volume correspond à celui de KR/ Σ(OK). Pour cette raison, on le note Vol (KR/ Σ(OK)). Le troisième lemme technique concerne un volume de cette nature :

  • Soit M un idéal de OK, l'égalité suivante est vérifiée :
\text{Vol}\left(\frac {\mathbb K_{\mathbb R}}{\Sigma (\mathfrak M)}\right) = 2^{-r_2}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2}.\mathcal N_{\mathbb K/\mathbb Q}(\mathfrak M)

La fonction Σ est celle définie au paragraphe précédent.

Théorèmes

Une fois les trois lemmes établis le théorème fondamental :

  • Si l'extension K est finie, le groupe des classes des idéaux de OK est fini.

est relativement simple à démontrer. La preuve utilise le résultat intermédiaire :

  • Si M est un idéal non nul de OK, il existe un élément m de M dont la norme relative vérifie la majoration suivante :
\mathcal N_{\mathbb K/\mathbb Q}(m) \le \left(\frac 4\pi\right)^{r_2} \frac {d!}{d^d}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2} \mathcal N_{\mathbb K/\mathbb Q}(\mathfrak M)

Cette proposition est la conséquence directe du théorème de Minkowski et des lemmes précédents. Elle implique le résultat suivant, conséquence du fait que la norme relative est multiplicative :

  • Soit M un idéal non nul de O, la classe de M -1 contient un idéal de norme inférieure à b, avec b défini par :
b= \left(\frac 4\pi\right)^{r_2} \frac {d!}{d^d}|\text{discr}(\mathcal O_{\mathbb K})|^{1/2}

La proposition suivante est immédiate :

  • Soit n un entier strictement positif, il n'existe qu'un nombre fini d'idéaux de norme relative n.

Il n'existe en effet qu'un nombre fini d'anneaux unitaires intègres de cardinal n et qu'un nombre fini de morphismes d'anneaux de OK dans un anneau donné.

Le théorème principal est la conséquence des deux derniers résultats. Il permet de démontrer le résultat suivant :

  • L'anneau OK est factoriel si et seulement s'il est principal.
Page générée en 0.163 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise