Nombre d'or - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Fragments d'histoire

Antiquité

Pour Thomas L. Heath, Platon est le premier grec à oser étudier les propriétés d'un nombre scandaleux car irrationnel, celui maintenant appelé nombre d'or.

Les historiens considèrent que l'histoire du nombre d'or commence lorsque cette valeur est l'objet d'une étude spécifique. Pour d'autres, la détermination d'une figure géométrique contenant au moins une proportion se calculant à l'aide du nombre d'or suffit. La pyramide de Khéops (vers 2520 av. J.-C.) devient, selon cette convention, un bon candidat pour l'origine. D'autres encore, se contentent des restes d'un monument dont des dimensions permettent d'approximer le nombre d'or. Selon ce critère, un amas de pierres sous la mer des Bahamas est une origine plus ancienne. Ces vestiges, dont l'origine humaine et la datation sont incertaines sont dénommés temple d'Andros.

Le premier texte mathématique indiscutable est celui des Éléments d'Euclide (vers 300 av. J.-C.). Le nombre d'or est défini comme une proportion géométrique « Une droite est dite coupée en extrême et moyenne raison quand, comme elle est tout entière relativement au plus grand segment, ainsi est le plus grand relativement au plus petit » Sa relation avec le pentagone, l'icosaèdre et le dodécaèdre est mise en évidence.

Les historiens s'accordent tous sur l'existence d'une origine plus ancienne, mais l'absence de document d'époque définitif interdit une connaissance indiscutable de l'origine. Dans ce cadre, l'hypothèse est parfois émise que le nombre d'or a son origine chez les pythagoriciens : ils auraient connu et construit empiriquement le dodécaèdre. L'historien des sciences Thomas L. Heath attribue la paternité de la découverte à Platon : « L'idée que Platon commença l'étude (du nombre d'or) comme sujet intrinsèque n'est pas sans consistance... ».

Heath précise néanmoins dans la même source que les pythagoriciens connaissaient déjà une construction du pentagone à l'aide de triangles isocèles. À cette époque, l'étude du nombre d'or est essentiellement géométrique, Hypsicles, un mathématicien grec du IIe siècle av. J.-C., en fait usage pour la mesure de polyèdres réguliers. Elle revient chaque fois qu'un pentagone est présent.

L'approche arithmétique est initialement bloquée par le préjugé pythagoricien qui voudrait que, à la différence du nombre d'or, tout nombre soit rationnel. Paul Tannery précise : « les Pythagoriciens sont partis de l’idée, naturelle à tout homme non instruit, que toute longueur est nécessairement commensurable à l’unité ». Platon évoque cette difficulté, les premières preuves du caractère irrationnel de certaines diagonales de polygones réguliers remontent probablement au Ve siècle av. J.-C.. Platon cite les travaux de son précepteur, Théodore de Cyrène, qui montre l'irrationalité de √5 et par voie de conséquence, celle du nombre d'or. Dès cette époque, les mathématiciens grecs découvrent des algorithmes d'approximation des nombres diagonaux et latéraux. Bien plus tard, Héron d'Alexandrie, un mathématicien du Ier siècle pousse plus loin cette démarche à l'aide des tables trigonométriques de Ptolémée.

Moyen Âge

Leonardo Pisano, plus connu sous le nom de Fibonacci, établit la relation entre des équations du second degré et le nombre d'or.

Les mathématiques arabes apportent un nouveau regard sur ce nombre, plus tard qualifié d'or. Ce n'est pas tant ses propriétés géométriques qui représentent pour eux son intérêt, mais le fait qu'il soit solution d'équations du second degré. Al-Khawarizmi, un mathématicien perse du VIIIe siècle, propose plusieurs problèmes consistant à diviser une longueur de dix unités en deux parties. L'un d'eux possède comme solution la taille initiale divisée par le nombre d'or. Abu Kamil propose d'autres questions de même nature dont deux sont associées au nombre d'or. En revanche, ni pour Al-Khawarizmi ni pour Abu Kamil, la relation avec la proportion d'extrême et moyenne raison n'est mise en évidence. Il devient ainsi difficile de savoir si la relation avec le nombre d'or était claire pour eux.

Leonardo Pisano, plus connu sous le nom de Fibonacci, introduit en Europe les équations d'Abu Kamil. Dans son livre Liber Abaci, on trouve non seulement la longueur des deux segments d'une ligne de 10 unités mais aussi, clairement indiquée la relation entre ces nombres et la proportion d'Euclide. Son livre introduit la suite qui porte maintenant son nom, connue aux Indes depuis le VIe siècle. En revanche la relation avec le nombre d'or n'est pas perçue par l'auteur. Un élément de cette suite est la somme des deux précédents.

Le quine, un système de mesure utilisé par les bâtisseurs de l'Art roman, se fonde sur un principe analogue. Il se compose de cinq unités de mesure, toutes commensurables : la paume égale à 34 lignes, la palme qui en vaut 55, l'empan 89, le pied de Charlemagne 144 et la coudée royale 233. Ces unités correspondent à des nombres consécutifs de la suite de Fibonacci. Une paume plus une palme est ainsi égale à un empan, une palme et un empan à un pied de Charlemagne, enfin un empan et un pied de Charlemagne à une coudée royale. Le rapport entre deux termes consécutifs vérifie de plus en plus précisément la proportion en extrême et moyenne raison. Si au Moyen Âge le nombre d'or est connu des tailleurs de pierre, sa géométrie est considérée comme assez secondaire et ne prend de l'importance uniquement à la Renaissance.

Renaissance

L'homme de Vitruve de Léonard de Vinci respecte les proportions explicitées par Vitruve, le nombre d'or n'intervient pas.

Trois siècles plus tard, Luca Pacioli rédige un livre dénommé La divine proportion, illustré par Léonard de Vinci. Si l'aspect mathématique n'est pas nouveau, le traitement de la question du nombre d'or est inédit. L'intérêt du nombre ne réside pas tant dans ses propriétés mathématiques que mystiques, elles « concordent avec les attributs qui appartiennent à Dieu... ». Pacioli cite les dix raisons qui l'ont convaincu. L'incommensurabilité prend, sous la plume de l'auteur, la forme suivante « De même que Dieu ne peut se définir en termes propres et que les paroles ne peuvent nous le faire comprendre, ainsi notre proportion ne se peut jamais déterminer par un nombre que l'on puisse connaître, ni exprimer par quelque quantité rationnelle, mais est toujours mystérieuse et secrète, et qualifiée par les mathématiciens d'irrationnelle ».

Pacioli rédige ainsi l'envoi de son livre : « une œuvre nécessaire à tous les esprits perspicaces et curieux, où chacun de ceux qui aiment à étudier la philosophie, la perspective, la peinture , la sculpture, l'architecture, la musique et les autres disciplines mathématiques, trouvera une très délicate, subtile et admirable doctrine et se délectera de diverses questions touchant à une très secrète science. », il est en revanche discret sur la manière dont s'applique cette proportion. Dans son traité d'architecture, l'auteur se limite aux proportions de Vitruve, un architecte de la Rome antique. Elles correspondent à des fractions d'entiers, choisies à l'image du corps humain. S'il cite comme exemple une statue du grec Phidias, ce n'est que pour y voir le nombre d'or dans un dodécaèdre, une figure associée au pentagone symbole de la quintessence, une représentation du divin. Les architectes de la Renaissance n'utilisent pas le nombre d'or

Les mathématiciens de l'époque ne sont pas en reste. Les spécialistes des équations polynomiales que sont Gerolamo Cardano et Raphaël Bombelli indiquent comment calculer le nombre d'or à l'aide d'équations de second degré. Un résultat plus surprenant est anonyme. Une note manuscrite, datant du début du XVIe siècle et écrite dans la traduction de Pacioli des éléments d'Euclide de 1509, montre la connaissance de la relation entre la suite de Fibonacci et le nombre d'or. Si l'on divise un terme de la suite par son précédent, on trouve une approximation du nombre d'or. Plus le terme est élevé, plus l'approximation est bonne et elle peut devenir aussi précise que souhaitée. Ce résultat est, plus tard, retrouvé par Johannes Kepler puis par Albert Girard. Kepler est fasciné par le nombre d'or, il dit de lui « La géométrie contient deux grands trésors : l’un est le théorème de Pythagore ; l’autre est la division d’une ligne en moyenne et extrême raison. Le premier peut être comparé à une règle d’or ; le second à un joyau précieux »

XIXe siècle : Naissance d'un mythe

Adolf Zeising appuie sa théorie sur des exemples naturels incontestables. Un Tournesol présente une figure où apparaît la suite de Fibonacci, ainsi que la spirale d'or.

Sur le front des mathématiques, l'intérêt diminue. Au XVIIIe siècle, le nombre d'or ainsi que les polyèdres réguliers sont considérés « avec assez de justice, comme une branche inutile de la géométrie ». On lui prête encore un peu d'attention au siècle suivant, Jacques Binet retrouve en 1843 un résultat oublié, démontré initialement par Leonhard Euler en 1765. Si la lettre φ désigne le nombre d'or, le énième terme de la suite de Fibonacci est donné par la formule 1/√5(φn + (1 - φ)n). Ce résultat est maintenant connu sous le nom de Formule de Binet. L'essentiel des travaux se reporte sur la suite de Fibonacci. Édouard Lucas trouve des propriétés subtiles associées à cette suite, auquel il donne pour la première fois le nom de Fibonacci. Son résultat le plus important porte le nom de Loi d'apparition des nombres premiers au sein de la suite Fibonacci

D'autres sont plus polémiques. Pour retrouver le nombre d'or dans le Parthénon, il est nécessaire d'user de conventions spécifiques.

C'est durant ce siècle que les termes de section dorée, puis nombre d'or apparaissent. On la trouve dans une réédition d'un livre de mathématiques élémentaires écrit par Martin Ohm. L'expression est citée dans une note de bas de page :« Certains ont l'habitude d'appeler la division en deux telles parties une section d'or » Cette réédition fait surface dans une période située entre 1826 et 1835, en revanche son origine est un mystère.

L'intérêt resurgit au milieu du siècle, avec les travaux du philosophe allemand Adolf Zeising. Le nombre d'or devient avec lui, un véritable système, une clé pour la compréhension de nombreux domaines, tant artistiques comme l'architecture, la peinture, la musique, que scientifiques avec la biologie et l'anatomie. Une dizaine d'années plus tard, il publie un article sur le pentagramme « manifestation la plus évidente et la plus exemplaire de cette proportion ». Une relecture de la métaphysique pythagoricienne lui permet de conclure à l'existence d'une loi universelle fondée sur le pentagramme et donc, le nombre d'or. Malgré une approche scientifique douteuse, la théorie de Zeising obtient un franc succès.

La France n'est pas en reste, pouvoir codifier de manière scientifique la beauté est une idée qui séduit. Les dimensions du Louvre, de l'Arc de triomphe sont mesurées avec attention, des délégations sont chargées de mesurer précisément la taille des pyramides égyptiennes ainsi que du Parthénon. Les cathédrales ne sont pas en reste. La France trouve son champion en Charles Henry, un peintre qui s'inscrit dans l'esprit positiviste de son temps. Dans un texte fondateur, à l'origine du mouvement pointilliste, il associe au nombre d'or, une théorie de la couleur et des lignes. Son influence auprès de peintres comme Seurat ou Pissarro n'est pas négligeable. Son attachement au nombre d'or n'est pas aussi profond que son collègue allemand. Il finit, en 1895, par abandonner définitivement l'idée de quantifier le beau.

XXe siècle : Le paroxysme

Toute spirale n'est pas d'or. Celle du nautile n'a rien à voir avec la divine proportion.

Loin de s'éteindre avec le déclin du positivisme, la popularité du nombre d'or ne fait que croître durant la première partie du siècle. Le prince roumain Matila Ghyka en devient l'incontestable chantre. Il reprend les thèses du siècle précédent et les généralise. Tout comme Zeising, il s'appuie tout d'abord sur les exemples issus de la nature, comme les coquillages ou les plantes. Il applique cette universalité à l'architecture avec des règles plus souples que son prédécesseur. Le succès de cette théorie finit par influencer les notations. Le nombre d'or est souvent noté φ, en référence à l'architecte Phidias, concepteur du parthénon.

La dimension mystique n'est pas absente chez Ghyka et trouve ses origines dans la philosophie pythagoricienne. L'absence de trace écrite sur le nombre d'or chez les pythagoriciens s'expliquerait par le culte du secret. Cette idée est largement reprise et généralisée par les mouvements de pensées ésotériques au XXe siècle. Le nombre d'or serait une trace d'un savoir perdu, nommé Tradition Primordiale ou Connaissance Occulte chez les Rose-Croix ou des mouvements connexes. On le retrouve chez les passionnés de l'Atlantide, qui voient dans la pyramide de Khéops ou le temple d'Andros la preuve d'un savoir mathématique oublié. Ce mouvement de pensée reprend des idées développées en Allemagne au XIXe siècle par Franz Liharzik, pour qui la présence du nombre d'or, de π et de carrés magiques est la preuve incontestable d'un groupe restreint d'initiés possédant la science mathématique absolue.

En 1929, une époque troublée par des idées d'un autre âge, Ghyka n'hésite pas à tirer comme conclusion de son étude sur le nombre d'or, la suprématie de ce qu'il considère comme sa race : « le point de vue géométrique a caractérisé le développement mental (...) de toute la civilisation occidentale (...) ce sont la géométrie grecque et le sens géométrique (... ) qui donnèrent à la race blanche sa suprématie technique et politique. » Si le prince n'insiste que très médiocrement sur cet aspect du nombre d'or, d'autres n'ont pas ses scrupules. Ils usent de l'adéquation de la morphologie d'une population avec les différentes proportions divines pour en déduire une supériorité qualifiée de raciale. Ce critère permet de fustiger certaines populations, sans d'ailleurs la moindre analyse. Le nombre d'or est, encore maintenant, sujet à de prétendues preuves de supériorité culturelle, sociale ou ethnique.

Sans cautionner ces idées extrêmes, certains intellectuels ou artistes éprouvent une authentique fascination pour le nombre d'or ou son mythe. Le compositeur Iannis Xenakis utilise ses propriétés mathématiques pour certaines compositions. L'architecte Le Corbusier reprend l'idée consistant à établir les dimensions d'un bâtiment en fonction de la morphologie humaine et utilise pour cela le nombre d'or. Paul Valéry un poète et intellectuel écrit à ce sujet des vers dans son Cantique des colonnes :

« Filles des nombres d'or
Fortes des lois du ciel
Sur nous tombe et s'endort
Un dieu couleur de miel. »

Le peintre Salvador Dali fait référence au nombre d'or et sa mythologie dans sa peinture, par exemple dans un tableau dénommé Le Sacrement de la dernière Cène.

Sur le plan mathématique, le nombre d'or suit une trajectoire inverse, son aura ne fait que diminuer et il quitte le domaine de la recherche pure. Il existe néanmoins une exception, une revue sur la suite de Fibonacci, dont l'objet est plus ludique qu'associé à la recherche. En revanche, le nombre d'or apparaît comme la clé de quelques sujets scientifiques. La question de phyllotaxie, se rapportant à la spirale que l'on trouve dans certains végétaux comme les écailles de la pomme de pin est-elle vraiment liée à la proportion d'Euclide ? Cette question fait couler beaucoup d'encre dès le siècle précédent. Wilhelm Friedrich Benedict Hofmeister suppose que cette spirale est la conséquence d'une règle simple. Pour le botaniste allemand Julius Sachs, ce n'est qu'un orgueilleux jeu mathématique, purement subjectif. En 1952, un scientifique, père fondateur de l'informatique, Alan Turing propose un mécanisme qui donnerait raison à Hofmeister. Deux physiciens, Douady et Couder, finissent par trouver l'expérience qui permet de conclure cette longue histoire. Hofmeister et Turing avaient raison, la présence du nombre d'or dans le monde végétal n'est ni fortuite ni subjective.

Page générée en 0.180 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise