Augustin Louis Cauchy - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Travaux

L’ensemble des travaux de Cauchy furent publiés de 1882 à 1974 chez Gauthier-Villars, dans les Œuvres complètes en 27 tomes qui rassemblent environ 800 articles couvrant l’analyse, l’algèbre, la mécanique et les probabilités. Lors de la préparation de ses cours et conférences, Cauchy réfléchit sur les fondements de l’analyse et introduisit des définitions rigoureuses de notions seulement intuitivement utilisées avant lui. Une partie importante de ses travaux concerne l’introduction des fonctions holomorphes et les séries convergentes.

Analyse

Avant les travaux de Cauchy en analyse, les séries et séries de fonctions étaient couramment utilisées dans les calculs, sans le développement d'un formalisme précis et cela conduisait à des erreurs fréquentes, car les mathématiciens ne se posaient pas de question sur l'éventuelle divergence des séries utilisées, comme l'a remarqué Cauchy. Dans son Cours d’Analyse, il définit rigoureusement la convergence des séries et étudie en particulier les séries à termes positifs : les sommes partielles convergent si et seulement si elles sont bornées. Il donne des résultats de comparaison de séries. Il déduit de la convergence des séries trigonométriques un critère de convergence qui porte aujourd’hui son nom, le critère de Cauchy : si la limite supérieure de la suite | an | 1 / n est strictement inférieure à 1, la série de terme général an converge. Intéressé par les séries entières (appelées alors séries de puissances), il met en évidence l'existence d'un rayon de convergence (qu’il appelle cercle de convergence), et en donne une méthode de calcul, conséquence de son critère de convergence. Il démontre que sous certaines hypothèses, le produit des sommes de deux séries convergentes peut s’obtenir comme la somme d’une série, appelée par la suite produit de Cauchy. Il en donne une version pour les séries entières.

Une fonction régulière était à tort considérée comme la somme de sa série de Maclaurin : autrement dit, on pensait à tort qu'une fonction indéfiniment dérivable était déterminée par la suite de ses dérivées successives en un point. En 1822, Cauchy relève deux problèmes : d’une part, le rayon de convergence de cette série entière peut être nul, et d’autre part, sur l’intersection des domaines de définition, la fonction et la somme de sa série de Maclaurin ne sont pas nécessairement égales. Cependant des solutions d’équations différentielles linéaires avaient été exprimées sous forme de séries entières sans aucune justification. Après avoir exhibé des exemples de fonctions plates, Cauchy s’intéresse de près au développement de Taylor, et évalue le reste sous forme de la détermination principale. Il donne ainsi des conditions suffisantes pour obtenir des réponses positives aux questions soulevées.

Toujours dans son Cours d’Analyse, il énonce et démontre le théorème des valeurs intermédiaires, démonstration déjà finalisée par Bolzano en 1817 à partir du critère de Cauchy pour la convergence des suites. Il précise les notions de limite ; et formalise en termes de limites la continuité et la dérivabilité. Il est arrêté dans ses travaux par une nuance qu'il ne perçoit pas : la différence entre convergence simple et convergence uniforme. Pourtant, la convergence simple (convergence d'une suite de fonctions en chaque point d'évaluation) n'est pas une condition suffisante pour préserver la continuité par passage à la limite. Il est le premier à donner une définition sérieuse de l’intégration. Il définit l’intégrale d’une fonction d’une variable réelle sur un intervalle comme une limite d’une suite de sommes de Riemann prises sur une suite croissante de subdivisions de l’intervalle considéré. Sa définition permet d'obtenir une théorie de l’intégration pour les fonctions continues. Dans son Analyse algébrique, il définit les logarithmes et les exponentielles comme uniques fonctions continues vérifiant respectivement les équations fonctionnelles f(x + y) = f(x)f(y) et f(xy) = f(x) + f(y). Bien qu'il se soit efforcé de donner des bases rigoureuses à l'analyse, il ne s'est pas interrogé sur l’existence du corps des nombres réels, établie plus tard par Georg Cantor.

Dans son cours de Polytechnique, Leçon de calcul différentiel et intégral, il apporte clarté et rigueur aux résolutions des équations différentielles linéaire d'ordre un et s'intéressa aux équations au dérivées partielles (théorème de Cauchy-Lipschitz).

Analyse complexe

On doit à Cauchy l'introduction des fondements de l'analyse complexe. Sous l’influence de Laplace, il présente dans le mémoire Sur les intégrales définies (1814) la première écriture des équations de Cauchy-Riemann comme condition d'analycité pour une fonction d'une variable complexe. Dans cet article, il s’intéresse à l’intégration d’une fonction analytique d’une variable complexe sur le contour d’un rectangle, donne la définition de résidu, et fournit un premier calcul de résidu. Dans Sur les intégrales définies prises entre des limites imaginaires (1825), il donne la première définition d'intégrale curviligne, démontre l'invariance par homotopie (formulée en termes d'analyse), et énonce précisément le théorème des résidus pour les fonctions analytiques comme outil pour le calcul d'intégrales.

En 1831, Cauchy propose une expression du nombre de racines complexe d’un polynôme dans une région du plan complexe. Si F et P sont des polynômes, il démontre :

\int_{\partial U}F(z).\frac{P'(z)}{P(z)}dz= \sum F(z_i),

où l'intégrale est prise sur le contour du domaine U, et où la somme porte sur les racines de P appartenant au domaine U.

Durant son séjour à Turin, il déduit de la formule de Cauchy précédemment énoncée une expression des coefficients de la série de Taylor d'une fonction analytique d'une variable complexe comme intégrales. Il en déduit les inégalités dites de Cauchy et des résultats sur la convergence des fonctions analytiques d’une variable complexe. Ses travaux seront publiés en 1838 et poursuivis par Laurent, qui fournit comme généralisation des séries entières les séries de Laurent.

Vers 1845, Cauchy s'inspire des travaux des mathématiciens allemands sur les nombres imaginaires, et en particulier l'écriture trigonométrique. Il repousse dans un premier temps cet aspect géométrique pour ensuite l'utiliser dans ses propres travaux. Il définit la notion de dérivée d'une fonction d'une variable complexe ; il établit ensuite l'équivalence entre dérivabilité et analycité, fondant ainsi la définition des fonctions holomorphes. Tous ses résultats précédents sur le sujet concernent les fonctions holomorphes ; la formule de Cauchy devint un outil central dans l’étude des fonctions holomorphes, et il étudie alors à nouveau les équations de Cauchy-Riemann.

Algèbre

Lagrange avait démontré que la résolution d’une équation algébrique générale de degré n passe par l’introduction d’une équation intermédiaire : sa résolvante dont le degré est le nombre de fonctions à n variables obtenues par permutation des variables dans l’expression d’une fonction polynomiale. Ce nombre est un diviseur de n! : ce résultat est aujourd’hui vu comme une conséquence de l’actuel théorème de Lagrange. En 1813, Cauchy améliore cette estimation et démontre que ce nombre est supérieur au plus petit diviseur premier de n. Son résultat fut généralisé ensuite en l’actuel théorème de Cauchy.

Il fut le premier à réaliser une étude des permutations comme des objets (appelés alors substitutions). Il introduit les écritures encore utilisées aujourd’hui pour noter les permutations ; il définit le produit, l’ordre, et établit l’existence et l’unicité de la décomposition des permutations en produit de cycles (substitutions circulaires) à supports disjoints. Les travaux de Cauchy et de Lagrange sur le sujet sont considérés comme précurseurs de la théorie des groupes. Cependant, Cauchy ne connaissait pas la théorie des groupes et donna sans le savoir une première étude du groupe symétrique.

En algèbre linéaire, il écrivit un traité sur le déterminant contenant l'essentiel des propriétés de cette application. Il étudia la diagonalisation des endomorphismes symétriques réels et qu'il démontra en dimension deux et trois et dans le cas où le polynôme caractéristique ne possède aucune racine multiple. Enfin, il formalisa la notion de polynôme caractéristique.

Géométrie

En 1811, il s’intéresse dans son premier mémoire à l’égalité de polyèdres convexes dont les faces sont égales. Il propose une démonstration du théorème de Descartes-Euler, concernant les nombres de sommets, de faces et d'arêtes d'un polyèdre convexe. Sa preuve consiste à projeter le polyèdre en un graphe planaire suivant ce qui est aujourd’hui appelé une projection stéréographique. Cependant, Cauchy commit une erreur, en ne faisant pas d’hypothèse claire sur les polyèdres étudiés.

Dans son second mémoire en 1812, il donna des formules pour calculer les angles diédraux.

Mécanique et optique

En mécanique, Cauchy proposa pour décrire la matière d’opposer à la continuité de la matière un système de points matériels dont les mouvements sont continus. Selon Cauchy, les forces entre ces particules doivent devenir négligeables sur les distances estimables. Cauchy énonça des lois sur les variations de tension, de condensation et de dilatation. Il fit une étude sur l’élasticité des corps.

S’intéressant à la variation des molécules d’éther, Cauchy établit les équations de propagation de la lumière en 1829. Il établit les modes de polarisation des ondes planes, mises en évidence par des travaux antérieurs de Fresnel. S’intéressant aux conditions limites au niveau d’une interface, Cauchy démontra les lois de la réflexion et de la réfraction de la lumière. Il retrouva les résultats de Brewster sur la variation de l’angle de polarisation lors d’une réflexion ou d’une réfraction. Enfin, il démontra l’existence d’ondes évanescentes, vérifiée expérimentalement par Jasmin.

Sous l’influence de Coriolis, Cauchy étudia la dispersion de la lumière. Ses travaux sur les ombres rejetèrent une des objections à la théorie ondulatoire de la lumière. Il mit en évidence le phénomène de diffraction.

En astronomie, sa recherche sur les séries lui permit de réviser la théorie des perturbations mise en place par Lagrange, Laplace, et Poisson pour étudier la stabilité du système solaire. Cauchy s’intéressa de plus près aux calculs astronomiques à partir de son élection au Bureau des Longitudes en 1839. En 1842, il proposa des méthodes de calculs de primitives d’expressions rationnelles en cosinus et sinus ; ces méthodes furent motivées par le développement de la fonction perturbative. En 1845, le mémoire de Le Verrier sur la planète Pallas est vérifié en quelques heures par Cauchy.

Probabilités

Les travaux de Cauchy sur le principe du minimax permirent de développer la théorie de la décision statistique. En 1853, il étudia, via leurs fonctions caractéristiques, une famille de distributions paires répondant à un problème variationnel, parmi lesquelles figurent la loi normale et la loi de Cauchy, découverte par Poisson. Faisant usage des fonctions caractéristiques, il publia une démonstration du théorème central limite.

Page générée en 0.183 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise