Encelade fait partie des satellites majeurs internes du système saturnien, et se situe en quatorzième position par ordre d'éloignement à partir de Saturne ; il orbite à l'intérieur de l'anneau E, le plus externe de tous, à l'endroit où la densité de matière est maximale au sein de cette couronne très large mais très ténu.
Encelade se trouve de plus en résonance 2:1 avec une autre lune de Saturne, Dioné, il parcourt donc exactement deux orbites pendant que Dioné de son côté fait un tour autour de la planète.
La distance moyenne entre Encelade et Saturne est d'environ 180 000 kilomètres, soit trois fois le rayon de cette planète, dont il fait le tour en 32 heures 53 minutes environ. Comme beaucoup de satellites naturels, Encelade est en rotation synchrone autour de Saturne, la durée de son orbite étant égale à celle de sa rotation sur lui-même, il présente ainsi toujours la même face vers la planète, comme le fait la Lune avec la Terre par exemple.
L'orbite d'Encelade est quasiment circulaire, avec une excentricité de seulement 0,0045, et est incliné de 0,019° par rapport au plan de l'équateur de Saturne.
Encelade est un satellite plutôt petit, avec un diamètre moyen de 500 kilomètres, soit presque sept fois inférieur à celui de la Lune. Ces dimensions réduites lui permettraient de tenir à l'intérieur des États du Colorado ou de l'Arizona, voire sur l'île de Grande-Bretagne comme le montre l'illustration ci-contre.
Il s'agit du sixième satellite de Saturne par ordre de masse et de diamètre décroissant, après Titan (5150 km de diamètre), Rhéa (1530 km), Japet (1440 km), Dioné (1120 km) et Téthys (1050 km). C'est également l'un des plus petits satellites sphériques du système interne, tous les autres satellites plus petits ayant une forme irrégulière (mis à part Mimas avec ses 390 km de diamètre).
Les dimensions précises du satellite, qui ont été calculées à l'aide des images du limbe prises par l'instrument ISS (sous-système d'imagerie scientifique) de la sonde Cassini sont de 513 ×503 ×497 km. La dimension correspond au diamètre du côté (toujours le même) tournée en direction de Saturne, au diamètre du côté face à l'orbite, et au diamètre entre les pôles. Encelade a donc globalement la forme d'un ellipsoïde aplati aux pôles.
Les images prises par Voyager 2 en août 1981 étaient les premières à fournir des observations topographiques intéressantes de la surface d'Encelade. L'illustration du tableau en début d'article est une mosaïque en fausse couleur des meilleurs clichés pris par la sonde. L'examen des données de Voyager a montré que la surface d'Encelade est constituée de plusieurs types de terrains, certains secteurs étant fortement cratérisés (donc vieux), tandis que d'autres sont totalement dépourvus de cratères d'impact (donc de formation récente). Ces zones, anciennes ou récentes, montrent toutes des signes de déformations très complexes et très variées, parfois de type cassant (failles, rifts, ...) parfois de type ductile (rides et sillons).
Compte tenu des modèles théoriques sur la fréquence des impacts météoritiques dans cette partie du système solaire, l'absence de cratère dans les plaines montre que certaines de ces régions sont âgées de moins de 100 millions d'années, et qu'il existe donc un processus, probablement de « volcanisme aqueux », qui permet le renouvellement de la surface, et qui expliquerait que la glace « propre » reste dominante à la surface d'Encelade.
La glace récente et « propre » qui recouvre la surface confère à Encelade l'albédo le plus élevé de tous les objets du système solaire (albédo géométrique visuel de 0,99±0,06). En conséquence, puisqu'il reflète la quasi-totalité du rayonnement qu'il reçoit de la part du Soleil, la température moyenne à sa surface est extrêmement faible, de l'ordre de 75 K à « midi » (soit -198℃).
Les observations réalisées durant les trois premiers survols rapprochés d'Encelade par la sonde Cassini ont permis d'étudier les formations géologiques à sa surface avec bien plus de détails qu'auparavant, la découverte la plus spectaculaire et la plus importante étant probablement l'étrange région du pôle sud, qui semble à la fois très torturée et très active.
Les formations géologiques d'Encelade tirent leurs noms de personnages et de lieux présents dans le recueil de contes persan les Mille et une nuits. Les types de terrain suivant sont officiellement reconnus par les scientifiques :
Ces désignations et les noms propres assignés à certaines régions ont été officiellement définis en 1982, peu de temps après le survol par Voyager 2. Les formations découvertes par la sonde Cassini n'ont pas encore officiellement reçu de nom.
Des cratères d'impact sont présents à la surface de la plupart des objets du système solaire, et Encelade ne fait pas exception, une bonne partie de sa surface étant couverte de cratères, la densité et le niveau de dégradation variant suivant les régions. À partir des observations de Voyager 2, trois types de terrain différents ont pu être identifiés : ct1 (cratered unit 1), comportant de nombreux cratères déformés par relaxation visqueuse ; ct2 (cratered unit 2), dont les cratères sont légèrement moins nombreux et moins déformés ; enfin cp (cratered plains), avec des cratères encore moins nombreux et plus petits que pour les autres régions. Bien que la densité importante des cratères de ct1 en fasse la région la plus ancienne d'Encelade, celle-ci reste tout de même plus récente que les surfaces les plus jeunes de tout autre satellite de taille moyenne de Saturne.
Les cratères d'impact sont des marqueurs importants de l'histoire géologique d'un objet, tout d'abord en indiquant à partir de quelle époque après la période de formation initiale la surface est devenue suffisamment solide pour conserver les traces des impacts ; ensuite, en observant les dégradations subies par les cratères, voire l'absence totale de cratère comme c'est le cas sur certaines parties d'Encelade, ils gardent les traces chronologiques des déformations subies par la croûte du satellite depuis l'impact.
Les observations réalisées depuis Voyager par la sonde Cassini ont permis d'obtenir beaucoup plus de détails sur ces régions cratérisées. Les images haute résolution montrent qu'une grande partie des cratères d'Encelade sont fortement dégradés, soit par relaxation visqueuse, soit par des failles apparaissant dans la croûte, ou par un processus d'« adoucissement des contours ».
La relaxation visqueuse est le phénomène par lequel des cratères formés sur une croûte de glace d'eau se déforment, à des échelles de temps géologiques. La rapidité du phénomène dépend en grande partie de la température de la glace, une glace « chaude » étant moins visqueuse et, en conséquence, plus facile à déformer. Le fond des cratères ayant été déformé par relaxation visqueuse tend généralement à prendre une forme de dôme ; après une très longue période, il peut ne subsister comme preuve de la présence d'un cratère que le rebord circulaire légèrement plus élevé que le sol environnant.
Se superposant au phénomène de relaxation visqueuse, la forme d'un grand nombre de cratères d'Encelade a été modifiée par des fractures tectoniques. La quasi-totalité des cratères photographiés par Cassini dans la région ct2 montrent des signes de déformations causées par des mouvements tectoniques, et notamment de nombreuses failles.
Un autre phénomène tend à dégrader les cratères de la région cp et des plaines, leur donnant un aspect arrondi, les reliefs abrupts fréquents dans le cas de déformations tectoniques semblant avoir été gommés (certaines fractures affichent également ce type d'adoucissement du relief). La cause de ce phénomène n'est pas encore bien comprise, l'hypothèse la plus probable étant liée au dépôt de régolithe provenant de l'anneau E.
Voyager 2 a permis de découvrir plusieurs types de formations tectoniques sur Encelade, parmi lesquelles des groupes de failles linéaires et de grandes bandes ridées curvilignes. Les résultats ultérieurs obtenus par Cassini suggèrent que les mouvements tectoniques sont la principale cause de déformation de la croûte sur Encelade. L'une des manifestations les plus spectaculaires de ces mouvements tectoniques sont des rifts (appelés fossae sur Encelade) qui peuvent atteindre près de 200 kilomètres de long et 5 à 10 kilomètres de largeur, sur un kilomètre de profondeur. Ces formations semblent relativement jeunes puisqu'elles coupent à travers d'autres formations de type tectonique, et que leurs reliefs apparaissent abrupts et anguleux le long des falaises.
Autre type de déformation tectonique, les sulci sont de grandes bandes de « rides » et de « sillons » plus ou moins parallèles, que l'on trouve souvent à la séparation entre les régions de plaines plutôt planes et les régions de cratères. Des formations du même type sont observées sur Ganymède, un des satellites de Jupiter, mais contrairement à ce que l'on trouve sur ce dernier, les rides des sulci d'Encelade ne sont pas forcément toujours bien parallèles, et de nombreuses zones présentent une forme en chevron rappelant celle de certains glaciers terrestres (mais les processus de formation sont probablement très différents). Les images de Cassini ont également permis de découvrir des « taches noires », de 125 à 750 mètres de large, alignées parallèlement aux lignes de fracture.
L'inventaire des différentes formations de la surface d'Encelade montre que celle-ci a été modelée par une histoire géologique à la fois longue et complexe, dont l'épisode le plus récent semble lié à une région centrée sur le pôle sud. Les images prises par la sonde Cassini pendant le survol effectué le 14 juillet 2005 ont permis d'étudier en détails cette « nouvelle » région qui n'apparaissait pas clairement sur les images précédentes de Voyager 2.
Cette zone, qui englobe le pôle sud jusqu'à une latitude de 55° sud environ, est couverte de fractures tectoniques et de failles mais ne possède aucun cratère (ou du moins aucun cratère visible avec la résolution des instruments de la sonde), suggérant ainsi qu'il s'agit de la surface la plus jeune d'Encelade. Les modèles concernant le taux théorique d'impacts dans cette région du système solaire permettent d'en déduire que cette région serait âgée de 10 à 100 millions d'années au maximum.
Au centre de cette région se trouvent quatre grandes failles d'environ 2 kilomètres de large sur 130 kilomètres de long et 500 mètres de profondeur. Elles sont bordées par des arêtes de 100 mètres de haut et de 2 à 4 kilomètres de large. Officieusement baptisées « rayures de tigre » et séparées d'environ 35 km, elles sont presque exactement parallèles, et une analyse attentive des images, notamment des intersections entre les différentes failles de la région, montre que ces fractures sont les plus récentes formations géologiques de la zone.
L'instrument VIMS de la sonde Cassini (Visible and Infrared Mapping Spectrometer - spectromètre dans le domaine visible et infra-rouge) a montré que la matière présente autour de ces « rayures de tigre » possède un spectre différent de celui du reste de la surface d'Encelade, et a également détecté des cristaux de glace à l'intérieur des rayures, ce qui implique qu'elles sont très jeunes (moins de 1000 ans, peut-être même seulement 10 ans). En effet, lorsque de l'eau liquide ou de la vapeur se condense en glace, il se forme de la glace cristalline. Or, l'action des rayons UV en provenance du Soleil et du rayonnement cosmique transforme en surface cette glace cristalline en glace amorphe en seulement quelques dizaines d'années. La présence de glace cristalline au niveau des « rayures de tigre » montre donc que cette glace s'est formée très récemment, soit par l'arrivée d'eau liquide qui a gelé sur place, soit par de la vapeur d'eau qui a givré.
L'environnement de l'une de ces rayures du pôle sud a été observé à très haute résolution lors du survol du 14 juillet, révélant une région extrêmement déformée par les mouvements tectoniques et couverte de gros blocs de glace dont la taille varie de 10 à 100 mètres de large. L'origine de ces blocs reste inconnue.
La frontière entre cette région très active centrée sur le pôle sud et le reste de la surface est marquée par des bandes de falaises et de vallées parallèles. La forme, l'orientation et la position de celles-ci indiquent qu'elles ont été causées par une modification de la forme globale d'Encelade, et notamment par une diminution du diamètre dans la direction de l'axe de rotation, qui pourrait être due à une modification de la période de rotation, ou bien à une réorientation du satellite engendrée par la formation d'un diapir large et peu dense dans le manteau glacé.
À la suite du passage de Voyager 2 au début des années 1980, les scientifiques émirent l'hypothèse qu'Encelade pourrait posséder des cryovolcans encore actifs, en se basant notamment sur la relative jeunesse de sa surface, et sur la position du satellite au cœur de l'anneau E de Saturne. Encelade semblait être la source des particules constituant celui-ci, probablement par un phénomène d'éjection de vapeur d'eau provenant des entrailles du satellite. L'une des conséquences visibles de ce cryovolcanisme actif devait être la présence d'une atmosphère, même très ténue, autour d'Encelade. Ce dernier est trop petit pour pouvoir retenir une atmosphère autour de lui par gravité, la présence d'une telle atmosphère serait donc la preuve qu'il existe un mécanisme récent ou même encore actif qui permet de la renouveler.
Les données collectées par plusieurs des instruments de la sonde Cassini ont permis de confirmer cette hypothèse. En premier lieu, le magnétomètre situé à bord de la sonde a mesuré, au cours des trois survols du 17 février, 9 mars et 14 juillet 2005, une déviation des lignes du champ magnétique de Saturne autour d'Encelade - cette déviation mesurée est cohérente avec les modèles théoriques qui prédisent qu'elle est provoquée par les courants électriques engendrés par les interactions entre les particules ionisées de l'atmosphère et le champ magnétique de la planète. Des analyses plus poussées de ces mesures ont également permis d'identifier la composition chimique des particules ; dans ce cas, se sont des molécules de vapeur d'eau ionisée qui furent observées. Lors du survol très rapproché du 14 juillet, l'équipe en charge du magnétomètre montra que les gaz de l'atmosphère d'Encelade sont concentrés au-dessus de la région du pôle sud, la densité de l'atmosphère étant beaucoup plus faible voire inexistante lorsque l'on s'éloigne de cette zone.
Ce résultat est complété par deux observations réalisées à l'aide de l'instrument UVIS (Ultraviolet Imaging Spectrograph, caméra et spectromètre dans le domaine ultraviolet) au cours de deux expériences d'occultations d'étoiles par Encelade, la première le 17 février et la deuxième le 14 juillet 2005. Lorsque l'on mesure la luminosité d'une étoile, et si la trajectoire de la sonde amène cet astre à passer derrière le satellite, la mesure de la variation de la luminosité peut indiquer la présence ou l'absence d'atmosphère. Si la luminosité de l'étoile cesse brusquement lorsque celle-ci passe derrière, alors il n'y a pas d'atmosphère visible, en revanche, si avant la disparition de l'étoile derrière le disque du satellite il y a une atténuation progressive, même légère, de la luminosité de l'étoile, c'est qu'il y a une atmosphère. La situation est symétrique lorsque l'étoile ressort de derrière Encelade.
Lors du survol de février, c'est Shaula (λ Scorpii) qui fut occultée (voir schéma ci-contre) : le suivi de la luminosité de l'étoile montre une chute brutale au moment de l'occultation, le même phénomène se répétant à la réapparition de l'autre côté d'Encelade. En revanche, lors de l'occultation le 14 juillet de Bellatrix (γ Orionis), l'instrument a pu mesurer une diminution progressive de la luminosité de l'astre, au fur et à mesure qu'il se rapprochait du limbe d'Encelade près du pôle sud. La réapparition de l'étoile de l'autre côté du disque fut cette fois encore très rapide ; ces deux observations montrent qu'Encelade possède bel et bien une atmosphère, mais qu'elle est très localisée, autour du pôle sud. Des analyses complémentaires du spectre de Bellatrix ont permis, en mesurant l'absorption de certaines raies spectrales bien particulières alors que l'astre était progressivement assombri, de montrer que la vapeur d'eau est le composant principal de cette atmosphère.
Pendant le survol rapproché de juillet, alors que la sonde traversait le nuage de gaz centré sur le pôle sud, l'instrument INMS (Ion and Neutral Mass Spectrometer - spectromètre de masse) détecta une nette augmentation de la quantité de vapeur d'eau (HO), mais également du diazote (N) et du dioxyde de carbone (CO). Enfin, le CDA (Cosmic Dust Analyzer - analyseur de poussières cosmiques) détecta lui aussi une augmentation du nombre de particules à l'approche d'Encelade, et notamment de micro-cristaux de givre, confirmant ainsi que le satellite est l'une des sources principales alimentant l'anneau E en matière. L'analyse des données du CDA et du INMS suggère que le nuage que la sonde a traversé est émis par ou très près des « rayures de tigre ».
L'atmosphère d'Encelade ne peut pas perdurer durablement sur un corps aussi petit avec une aussi faible gravité de surface (0,113 m/s2, soit 0,006 fois la gravité terrestre). Si elle est encore présente, c'est qu'elle est récente et n'a pas encore eu le temps de s'échapper dans l'espace, ou qu'il existe un mécanisme permettant de la régénérer continuellement.
Les données acquises par les instruments INMS et CDA de Cassini ont déjà montré que cette atmosphère est située non seulement exclusivement autour du pôle sud, mais que la densité de matière est maximale aux alentours des « rayures de tigre » (voir chapitre Atmosphère). D'autres mesures effectuées à l'aide du spectromètre infrarouge de la sonde (CIRS) au cours du même survol de juillet 2005 ont mis en évidence la présence de « point chauds », situés eux aussi très près des « rayures de tigre ». La température moyenne de cette région est de 85~90 kelvins, soit une quinzaine de degrés de plus que ce que prévoit la théorie en ne tenant compte que du rayonnement reçu de la part du Soleil. De plus, en augmentant encore la résolution de la mesure, certaines régions à l'intérieur des « rayures de tigre » ont été mesurées à des températures de 140 kelvins, bien que des températures encore plus élevées puissent exister, mais la résolution des instruments de Cassini ne permet pas de les différencier.
Les « rayures de tigre » sont donc devenus les lieux les plus probables de la source d'émission de matière dans l'atmosphère d'Encelade. La confirmation visuelle de cette émission de gaz et de poussières est venue en novembre 2005, lorsque Cassini observa des jets de particules de glace s'élevant à partir de la région du pôle sud. Les images prises à cette date montrent de nombreux jets très fins s'étendant dans toutes les directions, ainsi qu'un immense nuage de gaz, plus faible et plus diffus, qui s'étend à presque 500 kilomètres au-dessus de la surface d'Encelade. La plupart des particules de glace émises dans ces jets semblent finir par retomber à la surface, une fraction infime, environ un pourcent, s'échappant finalement pour aller alimenter l'anneau E.
Ces observations montrent que, bien que le terme d'atmosphère soit toujours utilisé, celle-ci n'est en fait qu'un immense nuage de gaz et de poussières, la partie la plus diffuse des jets situés au pôle sud.
Le mécanisme à l'origine de ce dégazage reste encore en bonne partie inconnu, et l'explication du phénomène dépend en grande partie du modèle utilisé pour la structure interne d'Encelade (voir cette section pour des détails). Parmi les deux hypothèses les plus développées, l'une suggère que ces jets pourraient provenir de poches de vapeur d'eau sous pression situées sous la surface, à la manière des geysers terrestres. L'autre hypothèse fait intervenir un mécanisme de sublimation de la glace de surface, réchauffée par la présence en profondeur d'une mélasse plus ou moins liquide et « chaude » composée d'eau et d'ammoniac.
![]() Traitement en fausses couleurs de l'image précédente, montrant la taille de la zone contenant les microparticules diffusant la lumière |