Titan | |
---|---|
| |
Caractéristiques orbitales | |
Type | Satellite de Saturne |
Demi-grand axe | 1 221 870 km |
Apoapside | 1 257 060 km |
Périapside | 1 186 680 km |
Excentricité | 0,0288 |
Période de révolution | 15,95 d |
Inclinaison | 0,280° |
Caractéristiques physiques | |
Diamètre | 5 151,0±4,0 km |
Masse | 1,3452±0,0002×1023 kg |
Masse volumique moyenne | 1,880±0,004×103 kg/m³ |
Gravité à la surface | 1,428 m/s² |
Période de rotation | 15,95 d (Synchrone) |
Albédo moyen | 0,2 |
Température de surface | 93,7 K |
Caractéristiques de l'atmosphère | |
Pression atmosphérique | 146,7 kPa 98,4 % N2 1,6 % CH4 |
Découverte | |
Découveur | Huygens |
Découverte | 25 mars 1655 |
Titan est le plus grand satellite de Saturne. Avec un diamètre supérieur à celui de Mercure, proche de celui de Mars, Titan est le deuxième plus grand satellite du système solaire, après Ganymède. Il s’agit du seul satellite connu à posséder une atmosphère dense. Découvert par l’astronome hollandais Christian Huygens en 1655, Titan est la première lune observée autour de Saturne.
Titan est principalement composé d’eau sous forme glacée et de roches. Son épaisse atmosphère a longtemps empêché l’observation de sa surface jusqu’à l’arrivée de la mission Cassini-Huygens en 2004, laquelle a permis la découverte de lacs d’hydrocarbures liquides dans les régions polaires du satellite. Du point de vue géologique, sa surface est jeune ; quelques montagnes ainsi que des cryovolcans éventuels y sont répertoriés, mais la surface de Titan demeure relativement plate et lisse avec peu de cratères d’impact observés.
L’atmosphère de Titan est composée à 98,4 % de diazote et comporte 1,6 % de nuages de méthane et d’éthane. Le climat — qui comprend des vents et de la pluie de méthane — crée sur la surface des caractéristiques similaires à celles rencontrées sur Terre, telles des dunes et des côtes, et, comme sur la Terre, possède des saisons. Avec ses liquides (à la fois à la surface et sous la surface) et son épaisse atmosphère d’azote, Titan est perçu comme un analogue de la Terre primitive, mais à une température beaucoup plus basse. Le satellite est cité comme un possible hébergeur de vie extraterrestre microbienne ou, au moins, comme un environnement prébiotique riche en chimie organique complexe. Certains chercheurs suggèrent qu’un possible océan souterrain pourrait servir d’environnement favorable à la vie.
Titan mesure 5 150 km de diamètre. En comparaison, la planète Mercure mesure 4 879 km de diamètre, la Lune 3 474 km, Mars 6 780 km et la Terre 12 742 km.
Avant l’arrivée de Voyager 1 en 1980, la communauté scientifique pense que Titan est légèrement plus grand que Ganymède (5 262 km de diamètre), ce qui aurait fait de lui la plus grande lune du système solaire. Cette surestimation est induite par l’atmosphère dense et opaque de Titan, qui s’étend à plus de 100 kilomètres au-dessus de sa surface et augmente son diamètre apparent.
Titan est donc le deuxième plus grand satellite du système solaire, et le plus grand satellite de Saturne.
Le diamètre et la masse de Titan (et donc sa masse volumique) sont similaires à ceux des lunes galiléennes Ganymède et Callisto. Sur la base d’une masse volumique de 1,88 g⋅cm3, Titan serait composé à moitié de glace d’eau et à moitié de roches (silicates et fer). Ces composés plus lourds sont très peu présents en surface où la glace est le composant principal de la croûte (phénomène de différenciation). Cette glace est majoritairement de la glace d’eau mais elle est probablement mélangée avec de la glace d’ammoniac (NH3) ainsi qu’avec des glaces d’hydrocarbures, principalement du méthane (CH4) et de l’éthane (C2H6).
Titan est très probablement différencié en plusieurs couches, avec un noyau rocheux de 3 400 km de diamètre entouré par plusieurs couches de différentes formes cristallines de glace. L’intérieur du satellite est peut-être toujours chaud et il est possible qu’une couche liquide d’eau et d’ammoniac existe entre la croûte de glace I et les couches de glaces plus internes. Un indice d’un tel océan est donné par la sonde Cassini sous la forme d’ondes radio à très basse fréquence dans l’atmosphère de Titan ; on pense que la surface du satellite est un mauvais réflecteur de ce type d’ondes, lesquelles sont plutôt réfléchies par la transition liquide-glace d’un océan interne.
Les données collectées par Cassini entre octobre 2005 et mai 2007 montrent que les caractéristiques de la surface se sont déplacées jusqu’à 30 km pendant cette période. Ce déplacement suggère que la croûte est séparée de l’intérieur de la lune, ce qui constitue un indice supplémentaire quant à l’existence d’un océan interne.
Titan est le seul satellite du système solaire possédant une atmosphère significativement développée ; les autres satellites n’ont au mieux que des traces de gaz. La taille de l’atmosphère de Titan serait comprise entre 200 km et 880 km (sur Terre, 99,999 % de la masse de l’atmosphère réside en dessous de 100 km d’altitude). Elle est opaque sur de nombreuses longueurs d’onde et interdit l’obtention d’un spectre de réflectance complet de la surface depuis l’extérieur.
L’existence d’une atmosphère est découverte par Gerard Kuiper en 1944 par spectroscopie. Ce dernier estime que la pression partielle de méthane est de l’ordre de 10 kPa. Plus tard, les observations des sondes Voyager montrent que la pression à la surface du satellite dépasse une fois et demi celle de la Terre. L’atmosphère comporte des couches opaques de brouillard qui bloquent la majorité de la lumière du Soleil. Pour cette raison, la sonde Huygens est incapable de détecter la position de celui-ci lors sa descente, et, bien qu’elle réussit à prendre des images de la surface, l’équipe de chercheurs en charge de la sonde décrit le processus comme « photographier un parking recouvert d’asphalte au crépuscule ».
La température moyenne de l’atmosphère au niveau du sol est de 94 K (-179 °C ou −290 °F) ; elle atteint un minimum de 72 K (-201 °C ou −330 °F) au niveau de la tropopause (à une altitude de 40 km). Titan est à une distance de 1 222 000 km de Saturne (20,2 rayons saturniens).
L’atmosphère de Titan est composée à 98,4 % d’azote — la seule atmosphère dense riche en azote du système solaire en dehors de la Terre —, les 1,6 % restants étant composés de méthane et de traces d’autres gaz comme des hydrocarbures (dont l’éthane, le diacétylène, le méthylacétylène, l’acétylène et le propane), du cyanoacétylène, du cyanure d’hydrogène, du dioxyde de carbone, du monoxyde de carbone, du cyanogène, de l’argon et de l’hélium.
Les chercheurs de la NASA pensent que les hydrocarbures forment la haute atmosphère. Ils proviennent de réactions de dissociation du méthane par la lumière ultraviolette du soleil qui produisent un épais smog orangé. Titan n’a aucun champ magnétique et orbite parfois en dehors de la magnétosphère de Saturne, l’exposant directement au vent solaire. Il est possible que certaines molécules soient ionisées et emportées en dehors de la haute atmosphère. En novembre 2007, des scientifiques découvrent des anions lourds dans l’ionosphère de Titan et estiment que ceux-ci tombent vers les régions plus basses pour former la brume orange qui obscurcit la surface du satellite. Leur structure n’est pas connue, mais il pourrait s’agir de tholins formant les bases de molécules plus complexes, comme les hydrocarbures aromatiques polycycliques. Ces résidus atmosphériques pourraient avoir formé des couches plus ou moins épaisses et ainsi recouvrir certaines parties de la surface de Titan d’une sorte de goudron. Les traces d’écoulement observées par la mission Cassini-Huygens sont bien plus sombres que le matériau sur lequel elles serpentent. Il est probable qu’elles sont recouvertes de tholins amenés par les pluies d’hydrocarbures liquides qui lessivent les parties apparaissant plus claires.
La circulation atmosphérique suit la direction de la rotation de Titan, d’ouest en est. Les observations de l’atmosphère effectuées par Cassini en 2004 suggèrent que l’atmosphère tourne plus rapidement que la surface.
L’ionosphère de Titan est plus complexe que celle de la Terre. La partie principale se situe à 1 200 km d’altitude, mais une couche additionnelle de particules chargées existe à 63 km d’altitude. L’atmosphère de Titan est donc en quelque sorte séparée en deux chambres résonnantes aux ondes radio distinctes. Titan émet des ondes à très basse fréquence dont l’origine n’est pas connue, car il ne semble pas y avoir d’activité orageuse intense.
La surface de Titan est décrite comme « complexe, produite par des fluides et géologiquement jeune ». La sonde Cassini utilise un altimètre radar et un radar à synthèse d’ouverture pour cartographier certaines zones de Titan pendant ses survols. Les premières images révélent une géologie diversifiée, avec des régions lisses et d’autres irrégulières. D’autres semblent d’origine volcanique, probablement liées à un dégorgement d’eau mélangée à de l’ammoniac. Certaines zones sont susceptibles d’être créées par des particules poussées par le vent. Globalement, la surface est relativement plate, les quelques objets ressemblant à des cratères d’impact semblent avoir été remplis, peut-être par des pluies d’hydrocarbures ou des volcans. L’altimétrie radar suggère que les variations d’altitude sont faibles, typiquement de l’ordre de 150 m. Néanmoins certaines zones atteignent jusqu’à 500 m de dénivelé et Titan possède des montagnes, certaines hautes de plusieurs centaines de mètres, jusqu’à plus d’un kilomètre.
La surface de Titan est marquée par de grandes régions de terrain clair ou foncé. Parmi celles-ci, Xanadu est une zone équatoriale réfléchissante de la taille de l’Australie. Elle est identifiée pour la première fois grâce à des images prises dans l’infrarouge par le télescope spatial Hubble en 1994, puis observée par la suite par la sonde Cassini. Cette région est remplie de collines et parcourue de vallées et de gouffres. Elle est traversée par endroits par des lignes sombres sinueuses ressemblant à des crêtes ou des crevasses. Celles-ci pourraient être d’origine tectonique et indiquer que Xanadu est une zone géologiquement jeune. Il pourrait également s’agir de canaux d’origine liquide, suggérant au contraire un terrain ancien érodé par des ruisseaux. Des zones sombres de taille similaires existent ailleurs sur la lune et sont observées depuis l’espace comme depuis le sol ; elles sont supposées être la trace de lacs de méthane et d’éthane, mais les observations récentes de Cassini semblent indiquer que ce n’est pas le cas.
En 2005, le module Huygens touche terre à l’est de la région nommée Adiri et photographie des collines pâles traversées de « rivières » sombres se dirigeant vers une plaine également sombre. Ces collines seraient composées de glace d’eau. Des composés organiques sombres, créés dans la haute atmosphère de Titan par le rayonnement ultraviolet du Soleil, pourraient pleuvoir sur ces montagnes. Ils seraient ensuite lessivés par la pluie de méthane et déposés sur les plaines.
Après s’être posé, Huygens photographie une plaine sombre couverte de petits rochers et de cailloux, tous deux composés de glace d’eau. Des signes d’érosion sont visibles à la base des rochers, indiquant une possible activité fluviale. La surface se révèle alors plus sombre que prévue et est composée d’un mélange d’eau et de glace d’hydrocarbures. Le « sol » visible dans les images prises par la sonde pourrait s’être formé par précipitation d’hydrocarbures. Il est possible que des régions de la surface de Titan soient recouvertes d’une couche de tholins, mais ce point n’est pas confirmé à l’heure actuelle.
Les conditions de température et de pression à la surface de Titan permettent au méthane et à l’éthane d’exister sous forme liquide. La présence de méthane liquide à la surface permettrait d’expliquer la grande quantité de méthane dans l’atmosphère. Cette hypothèse voit le jour lorsque les planétologues se rendent compte du phénomène de destruction du méthane atmosphérique, au cours des années 1970. L’hypothèse d’un océan global d’hydrocarbures est même envisagée mais les premières observations de la surface de Titan en infrarouge et en ondes radio depuis la Terre réfutent cette possibilité. Les sondes Voyager montrent que l’atmosphère de Titan est compatible avec l’existence de liquides, mais une preuve directe n’est obtenue qu’en 1995, lorsque des données de Hubble ainsi que d’autres observations suggèrent l’existence sur Titan de méthane liquide sous forme soit de poches disjointes soit de lacs et de mers de la taille d’océans.
La mission Cassini ne confirme pas immédiatement cette dernière hypothèse. En effet, lorsque la sonde arrive dans le système de Saturne en 2004, les chercheurs de la NASA et de l’ESA espèrent que des lacs d’hydrocarbures soient détectables par la réflexion du Soleil à leur surface, mais aucune réflexion spéculaire n’est initialement observée. De nombreuses images évoquant des côtes et prises par Cassini en 2004 et 2005 ne s’avèreront finalement n’être que des limites entre zones claires et zones sombres.
C’est en juin 2005, au pôle sud, que le premier lac potentiel est identifié sous l’aspect d’une zone très sombre, a posteriori nommée Ontario Lacus. Ce lac a probablement été créé par les nuages qui se concentrent à cet endroit. À la suite du survol du 22 juillet 2006, Cassini image les latitudes nord du satellite et met en évidence de grandes zones lisses (et donc sombres au radar) qui constellent la surface près du pôle. Sur la base de ces observations, l’existence de lacs remplis de méthane à la surface de Titan est alors confirmée en janvier 2007. L’équipe scientifique de Cassini–Huygens conclut que les régions imagées sont selon toute vraisemblance des lacs d’hydrocarbures, les premières étendues de liquide stables découvertes en dehors de la Terre. Certaines d’entre elles gisent dans des dépressions topographiques et semblent posséder des canaux associés avec du liquide.
La sonde Cassini ne découvre que peu de cratères d’impact à la surface de Titan, ce qui suggère une surface jeune. Parmi les cratères découverts, les plus notables sont Menrva, un bassin de 440 km de diamètre à plusieurs anneaux, Sinlap, un cratère à fond plat de 80 km de diamètre et Ksa, un cratère de 30 km de large possédant un pic central et un plancher sombre. Cassini met également en évidence des « cratériformes », des objets circulaires à la surface de Titan qui pourraient être liés à un impact, mais qui ne possèdent pas certaines caractéristiques rendant leur identification certaine. Par exemple, un anneau de matériau clair de 90 km de diamètre nommé Guabonito pourrait être un cratère rempli de sédiments sombres. D’autres zones similaires sont observées dans les régions sombres Shangri-la et Aaru. Des objets circulaires sont également observés par Cassini dans la région claire nommée Xanadu lors du survol du 30 avril 2006.
Des modèles de trajectoires et d’angles d’impact réalisés avant la mission Cassini suggèrent que lors d’un impact avec la croûte d’eau glacée, une petite partie des éjectas aqueux reste à l’état liquide dans le cratère. Celle-ci pourrait demeurer à l’état liquide pendant plusieurs siècles, une durée suffisante pour la synthèse de molécules précurseurs à l’apparition de la vie. L’atmosphère de Titan pourrait également jouer un rôle de bouclier en divisant par deux le nombre de cratères à sa surface.
Titan est sujet au cryovolcanisme. De l’argon-40 détecté dans l’atmosphère indique que des volcans recrachent des panaches d’une « lave » d’eau et d’ammoniac. Cassini ayant détecté des émissions de méthane provenant d’un cryovolcan, la communauté scientifique pense désormais que le volcanisme est une source significative de la présence de méthane dans l’atmosphère. L’un des premiers objets imagés par Cassini, Ganesa Macula, ressemble à certains volcans de Vénus et est suspecté d’être d’origine cryovolcanique. La pression nécessaire pour alimenter les cryovolcans pourrait être causée par la couche de glace externe de Titan. La glace, surplombant une couche de sulfate d’ammonium liquide, pourrait flotter vers le haut et ce système instable pourrait produire des épanchements brutaux. Des grains de glace et de la cendre de sulfate d’ammonium feraient surface de cette façon.
Une chaîne de montagnes mesurant 150 km de long, 30 km de large et 1,5 km de haut est découverte par Cassini en 2006. Cette chaîne, située dans l’hémisphère sud, serait composée d’un matériau glacé recouvert d’une glace de méthane. Le mouvement des plaques tectoniques, possiblement influencé par un bassin d’impact proche, pourrait avoir ouvert une brèche à travers laquelle le matériau a fait surface.
Sur les premières images de la surface de Titan prises depuis la Terre au début des années 2000, de grandes régions sombres sont mises en évidence à cheval sur l’équateur. Avant l’arrivée de Cassini, les chercheurs pensent que ces régions sont des mers de matière organique, comme du goudron ou des hydrocarbures liquides. Les images radar prises par Cassini révèlent que certaines de ces régions sont en réalité de grandes plaines recouvertes de dunes, certaines mesurant jusqu’à 330 mètres de haut. Des dunes de ce type seraient formées par des vents modérément variables qui soufflent dans une direction moyenne ou alternent entre deux directions distinctes. Dans le cas de Titan, des vents zonaux constants se combineraient avec des vents de marées variables. Ces derniers résultent des forces de marée de Saturne sur l’atmosphère de Titan, lesquelles sont 400 fois plus importantes que celles de la Lune sur la Terre et tendent à orienter le vent vers l’équateur. Ces motifs de vent conduisent les dunes à se former sur de longues lignes parallèles orientées d’ouest en est. Ces dunes se brisent autour des montagnes, où la direction du vent change. Selon Athena Coustenis de l’observatoire de Paris-Meudon, ces dunes seraient au contraire formées de poussières dont la densité est bien moindre que sur Terre, où les grains de sable sont formés de silice. Des vents réguliers de faible puissance suffiraient donc à mettre les sables titaniens en mouvement.
Le sable sur Titan pourrait s’être formé suite à l’écoulement du méthane liquide responsable de l’érosion du substrat de glace, peut-être sous la forme de crues. Il pourrait également provenir de solides organiques produits lors de réactions photochimiques dans l’atmosphère du satellite.