Module lunaire Apollo - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Une phase de conception laborieuse (1963-1964)

Version initiale du module lunaire : la taille des hublots va être réduite, le dispositif d'amarrage situé à l'avant disparaitre et le train d'atterrissage être refondu.
Le Centre spatial Marshall de la NASA Houston assiste Grumman dans la phase de conception et réalise les tests de réception

Le 7 novembre 1962, la société Grumman remporte l'appel d'offres. Ce constructeur américain du célèbre chasseur embarqué (Hellcat et, par la suite, du F14) avait, jusque là, soumissionné sans succès à plusieurs appels d'offres de la NASA. Grumman tient à pénétrer le marché de l'aérospatiale et avait mobilisé une importante équipe d'ingénieurs pour travailler à la conception du futur module lunaire avant même le lancement de l'appel d'offres.

L'interlocuteur de Grumman au sein de la NASA sera le Centre des Vols Habités de la NASA (Manned Spacecraft Center ou MSC) qui vient d'emménager au Centre Spatial de Houston (aujourd'hui Centre Spatial Lyndon B. Johnson ou JSC). Ce dernier doit assister Grumman dans la phase de spécifications et a en charge la qualification du module lunaire. Après un round de négociations, destiné à figer la distribution des tâches et des procédures, la rémunération de Grumman est fixée à 385 millions $ incluant un bénéfice de 25 millions pour Grumann, bien que les contractants n'aient, à l'époque, qu'une idée peu précise de l'engin à construire.

Le projet part avec un handicap d'un an par rapport aux autres composants du programme Apollo, notamment le CSM. Début 1963, les ingénieurs de Grumman, basés à Bethpage, Long Island (État de New York), commencent à travailler sur l'architecture générale du module lunaire. Au cours des premiers échanges avec la NASA, on évoque un vaisseau spatial de 3 mètres de diamètre et de 4,5 mètres de haut pesant environ 11 tonnes comportant une partie habitable de la taille et de la forme d'une cabine d'hélicoptère.

Un étage de remontée profondément remanié

Au fur et à mesure de l'avancement des études beaucoup de ces caractéristiques vont être remises en question.

Les hublots qui reprenaient, dans la proposition de départ, la disposition bombée d'une cabine d'hélicoptère pour procurer la vision la plus complète au pilote (ce qui était jugé essentiel pour les manœuvres délicates d'atterrissage et de rendez-vous) voient leur taille se réduire, pour des raisons de rigidité structurelle et de contrôle thermique, à 2 petits triangles de verre inclinés vers le bas représentant 10 % de la surface initiale.

Deux possibilités d'arrimage au module de commande et de service Apollo étaient prévues : une écoutille placée au sommet de l'étage de remontée devait être utilisée avant le débarquement sur la Lune, tandis que l'écoutille située sur la face avant était utilisée au retour lors du rendez-vous orbital lunaire pour permettre au pilote de contrôler visuellement son approche à travers les hublots : finalement, pour gagner en poids (s'il y a arrimage, il faut un tunnel et des renforts structurels), un petit hublot est ajouté dans la partie supérieure de l'étage de remontée permettant d'utiliser également l'écoutille supérieure au retour.

Les ergols utilisés par les moteurs de remontée ont une masse différente. Chaque type d'ergol est réparti dans deux réservoirs pour permettre une répartition symétrique de la masse. Ce schéma retenu pour l'étage de descente est abandonné dans l'étage de remontée : chaque type d'ergol sera stocké dans un seul réservoir. La distance entre chaque réservoir et l'axe de poussée sera différente pour ne pas déséquilibrer le vaisseau. Cette disposition donne une apparence nettement dissymétrique à la silhouette de l'étage de remontée.

Pour économiser le poids et le volume de la cabine, les sièges des astronautes sont remplacés par de simples harnais qui maintiennent les astronautes dans les phases d'impesanteur ou de forte accélération : cette solution, viable dans le contexte de gravité généralement nulle ou faible de la mission, est acceptée par les astronautes ; elle permet au pilote, plus proche du hublot (dans une position de conducteur de tramway dit l'astronaute Conrad), d'avoir une meilleure visibilité sur l'extérieur.

Des essais dans un environnement simulant la gravité lunaire remettent en cause le dessin de l'écoutille avant ainsi que la méthode proposée pour la descente sur le sol lunaire (une corde). On donne alors une forme carrée à l'écoutille (elle était ronde à l'origine), et on l'agrandit fortement pour que les astronautes puissent passer sans encombre ; une plate-forme est ajoutée devant l'écoutille ainsi qu'une échelle à son aplomb portée par une des jambes du train d'atterrissage.

Deux solutions sont étudiées pour le positionnement des équipements : à l'intérieur de la cabine pressurisée, à portée de main des astronautes, ou à l'extérieur. La solution retenue est un compromis : une partie des équipements est logée à l'extérieur de la cabine pressurisée (essentiellement sur la face arrière). Le vaisseau ne doit voler que dans le vide spatial : les ingénieurs en tirent les conséquences et éliminent dans la forme extérieure tout ce qui relève d'une recherche d'aérodynamisme et accroît le volume pressurisé. La forme résultante, peu esthétique vaut au module lunaire les surnoms de « punaise » (bug) et « araignée » (spider).

Ces modifications ainsi que d'autres non citées donnent à la cabine des formes si torturées que, dans certains cas, les ingénieurs de Grumman choisissent d'assembler les éléments de la structure du LEM par rivetage (au lieu de la soudure) au grand mécontentement des représentants de la NASA qui émettront longtemps des doutes sur l'étanchéité de la cabine pressurisée.

Début mai 1963 plusieurs caractéristiques importantes ne sont toujours pas définies et la masse du module lunaire continue de croître. Toutefois, l'évolution prévisible de la puissance de la fusée Saturn V donne de la marge puisque celle-ci peut désormais emporter un module lunaire de 13 tonnes contre les 9 tonnes prévues au lancement de l'appel d'offres.

Le sol lunaire, cet inconnu

La configuration du train d'atterrissage est l'objet de nombreux débats car les ingénieurs ne disposent jusqu'en 1966 d'aucune donnée précise sur la consistance du sol lunaire. Dans le doute, la NASA modifie ses spécifications initiales en demandant à Grumman de faire passer la taille des semelles situées à l'extrémité des jambes du train d'atterrissage de 22 à 91 cm de diamètre. Mais dans cette nouvelle configuration le LEM ne tient plus dans le carénage qui doit l'accueillir au sommet de la fusée Saturn V : il faut donc prévoir un train d'atterrissage articulé qui ne sera déplié qu'une fois le module lunaire extrait de son carénage. Pour des raisons d'encombrement également le nombre de jambes passe de cinq à quatre après avoir envisagé de le réduire à trois. Cette dernière solution est écartée car elle aurait condamné à mort les astronautes en cas de rupture d'une jambe à l'atterrissage.

Des moteurs complètement nouveaux

Moteur de l'étage de remontée
Le LGC ordinateur également présent dans le module de commande

Le module lunaire doit disposer de deux moteurs-fusée de conception nouvelle (1 par étage) et de 16 petits moteurs de contrôle d'attitude regroupés par grappes de quatre et situés sur l'étage de remontée.

Le moteur de l'étage de descente a des caractéristiques qui en font sans doute la plus grande innovation technique de tout le projet Apollo dans le domaine des moteurs : pour pouvoir poser le LEM sur la Lune, la poussée du moteur doit être à la fois orientable (de 6° maximum par rapport à l'axe vertical) et surtout modulable entre 4,7 et 43,9 kN). Pour limiter le risque, Grumman demande à 2 industriels de construire un prototype en se proposant de sélectionner à l'échéance le projet le plus abouti : la société Rocketdyne propose de moduler la poussée grâce à l'injection d'un flux d'hélium tandis que Space Technology Laboratories (STL) choisit de faire varier le débit de carburant grâce à des vannes et un injecteur à superficie variable. Début 1965 les deux fabricants ont obtenu des résultats sensiblement identiques : Grumman sélectionne Rocketdyne mais la NASA intervient et impose le choix de STL pour que Rocketdyne puisse se concentrer sur les développements que cet industriel mène dans le cadre du programme Gemini.

Une électronique complexe

Lorsque le projet Apollo est lancé, la NASA estime nécessaire que l'équipage puisse calculer les paramètres complexes du vol sans dépendre des moyens de calcul situés sur Terre : en orbite autour de la Lune, il faut en effet composer avec le temps de latence entre deux échanges Terre-Lune (3 secondes pour l'aller retour), la nécessité de réagir rapidement dans la phase de descente vers le sol lunaire, les problèmes de communication qui peuvent survenir, etc...

Pour répondre à ce besoin il est prévu que le module lunaire dispose d'un système de navigation et de pilotage complexe(le Primary Guidance, Navigation and Control System PGNCS) construit autour d'une centrale à inertie et d'un ordinateur (le LGC Lem Guidance Computer). Ce dernier prend en charge, grâce à des programmes de navigation élaborés, à la fois la détermination de la position du LEM dans l'espace, le calcul de la trajectoire à suivre et le pilotage automatique (force et direction de la poussée des moteurs).

La NASA, qui suit directement cette fourniture exige que le système fourni par le Massachusetts Institute of Technology (MIT) et installé dans le Module de Commande soit repris dans le LEM malgré une évaluation négative de Grumman. Le MIT avait l'expérience d'ordinateurs embarqués à bord de sondes spatiales et plus récemment du missile Polaris. La première version du LGC fabriquée en 1963 est d'ailleurs une extrapolation de celui utilisé dans les missiles Polaris. Pour diminuer le poids et accélérer le temps de traitement, le MIT choisit de remplacer les transistors par des circuits intégrés. La fabrication des circuits intégrés à l'époque vient tout juste d'être lancée (1961) et leur fiabilité n'a pas encore pu être prouvée. Le MIT achète à cette époque 60 % de la production mondiale pour les besoins des ordinateurs des vaisseaux Apollo. La mise au point du système de Navigation et de Pilotage fortement interfacé avec d'autres sous-systèmes du LEM est longue et difficile : il faudra que la NASA s'implique fortement dans les relations entre le fabricant du LEM et son sous-traitant MIT pour que les principaux problèmes soient aplanis dans les délais impartis.

L'autonomie théorique procurée par le système de navigation et de pilotage sera fortement réduite lorsque les missions Apollo seront élaborées : c'est le contrôle au sol à Houston qui fournira en réalité les principaux paramètres tels que la position du LEM ainsi que le vecteur de la poussée avant chaque allumage des moteurs. Houston dispose au moment des premiers vols vers la Lune de moyens de calcul plus puissants et, grâce à la télémétrie, connaît parfaitement la position des vaisseaux et leur trajectoire. Une fois une phase de vol engagée, c'est toutefois à l'ordinateur de bord d'appliquer les corrections nécessaires en se basant sur ses capteurs et ses capacités de calcul. Par ailleurs, l'ordinateur joue un rôle essentiel pour le contrôle des moteurs (fonction autopilote) et gère de nombreux sous-systèmes ce qui lui vaut le surnom de quatrième homme de l'équipage. Sans l'ordinateur, les astronautes n'auraient pu poser le LEM sur la Lune car lui seul pouvait optimiser suffisamment la consommation de carburant pour se contenter des faibles marges disponibles.

Il est prévu que le LEM dispose de deux radars l'un utilisé pour l'atterrissage l'autre pour le rendez-vous avec le CSM. La NASA va longtemps hésiter pour des raisons de poids et de performance, entre l'installation d'un radar de rendez-vous et un système purement optique.

Fiabilité

La NASA est, dès le lancement du programme Apollo, très sensible aux problèmes de fiabilité. L'envoi d'astronautes sur la Lune est une entreprise beaucoup plus risquée que les vols spatiaux autour de la Terre. Pour les missions en orbite terrestre, en cas d'incident grave, le retour est assuré relativement facilement par une brève poussée des rétrofusées. Une fois en orbite lunaire ou, cas encore plus délicat, sur le sol lunaire, le retour des astronautes sur Terre nécessite que les principaux sous-systèmes du module lunaire ne connaissent aucune défaillance. Ces objectifs font du module lunaire un système complexe donc susceptible d'avoir un taux de panne élevé.

Comme sur le module de service, les ergols liquides retenus pour les moteurs sont hypergoliques, c'est-à-dire qu'ils s'enflamment spontanément quand ils sont mis en contact et ne sont pas à la merci d'un système d'allumage défaillant. Leur mise sous pression est effectuée classiquement grâce à de l'hélium supprimant le recours à une fragile turbopompe. Il n'est à l'époque pas du tout envisagé de recourir aux carburants cryogéniques (Oxygène/Hydrogène) plus performants mais dont le stockage et la mise en œuvre auraient été beaucoup plus délicats.

Pour parvenir au taux de fiabilité visé, la NASA envisage d'abord de donner aux astronautes la possibilité de réparer les composants défaillants. Mais ce choix suppose de les former à des systèmes nombreux et complexes, d'emporter des outils et des pièces de rechange et de rendre accessibles les composants à réparer ce qui les rend vulnérables à l'humidité et à la contamination. La NASA renonce à cette solution en 1964 et décide d'intégrer dans la conception du vaisseau des solutions de contournement fournissant une alternative pour chaque anomalie susceptible de se produire. En cas de panne de sous-systèmes complets jugés vitaux, des systèmes de secours doivent pouvoir prendre le relais dans un mode plus ou moins dégradé. Ainsi le système de navigation (ordinateur + système inertiel) dispose d'un système de secours développé par un autre constructeur pour éviter qu'une même faille logicielle mette en panne les deux systèmes. Les 4 groupes de moteurs de contrôle d'attitude sont regroupés par paires indépendantes, chacune d'entre elles pouvant couvrir le besoin en mode dégradé. Le système de régulation thermique est doublé. Les circuits d'alimentation électrique sont également doublés. L'antenne de télécommunications en bande S peut être remplacée par deux antennes plus petites en cas de défaillance. Il n'y a néanmoins pas de parade à une panne de moteur : seuls des tests poussés avec un maximum de réalisme peuvent permettre d'atteindre le taux de fiabilité attendu. Des solutions techniques conservatrices mais éprouvées sont dans certains cas retenues : c'est le cas de l'énergie électrique (choix des batteries), des systèmes pyrotechniques (choix de systèmes existants standardisés et éprouvés) ainsi que l'électronique de bord (les circuits intégrés, bien qu'acceptés dans les ordinateurs, ne sont pas retenus pour le reste de l'électronique).

Selon Neil Armstrong, les responsables du projet avaient calculé qu'il y aurait environ 1 000 anomalies à chaque mission Apollo (fusée, CSM et LEM), chiffre extrapolé du nombre de composants et du taux de fiabilité exigé des constructeurs. Il y en aura, en fait en moyenne 150 ce que Armstrong attribue à l'implication exceptionnellement forte des personnes ayant travaillé sur le projet. Aucune des pannes du LEM n'empêcha les équipages Apollo de remplir leurs principaux objectifs.

La validation de la conception

Pas moins de cinq maquettes plus ou moins complètes sont réalisées par Grumman entre 1963 et 1964 (la dernière M5 en octobre 1964) pour mettre au point et faire valider par la NASA les spécifications du Module Lunaire.

Page générée en 0.543 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise