Cet article traite de la partie historique relative à la découverte et la compréhension des trous noirs.
L'histoire des trous noirs est directement liée à la question de savoir si la lumière a une masse ou pas, ou, en d'autres termes, si la lumière peut être influencée par la gravité comme une particule de matière ou pas. À l'époque de Newton et donc de la mécanique de Newton, au XVIIe siècle, la lumière était considérée seulement comme une onde électromagnétique, donc dépourvue de masse. Pourtant, la finitude de sa vitesse était connue ainsi que la notion de vitesse de libération (vitesse limite à partir de laquelle un objet se libère de la gravité d'un corps). Dans ce contexte, les trous noirs peuvent être considérés comme un exemple typique de paradoxe où conduit une théorie poussée à sa limite.
En effet, en 1783, le révérend John Michell géologue et astronome amateur anglais expose dans un article envoyé à la Royal Society le concept d'un corps si massif que même la lumière ne pourrait s'en échapper. Il écrit alors dans son article[1] : " Si le demi-diamètre d'une sphère de la même densité que le Soleil et qui excéderait celui du soleil d'une proportion de 500 à 1, un corps tombant depuis une hauteur infinie vers elle aurait acquis à sa surface une vitesse plus grande que celle de la lumière. En conséquence, supposant que la lumière est attirée par la même force en proportion de sa " vis inertiae " (masse d'inertie), comme les autres corps, toute lumière émise depuis ce corps reviendrait sur elle-même par sa propre gravité. "
Il expliquait que bien que ces corps soient invisibles, ils devaient provoquer des effets gravitationnels décelables : " S’il arrivait que quelque autre corps lumineux tourne autour d’eux, des mouvements de ces corps tournants, nous pourrions peut-être encore déduire l’existence du corps central avec quelque degré de probabilité; cela pourrait aussi bien nous apporter une indication concernant quelques unes des irrégularités des corps tournants, qui ne serait pas aisément explicable par aucune autre hypothèse. " La thèse de Michell restait très abstraite et ne reçut aucun écho.
Il faudra attendre 1796 pour que le marquis Pierre-Simon Laplace, mathématicien, philosophe et astronome passionné par la mécanique céleste et la gravitation redécouvre cette idée. Il écrivait dans son livre Exposition du Système du Monde : " Un astre lumineux, de la même densité que la Terre, et dont le diamètre serait 250 fois plus grand que le Soleil, ne permettrait, en vertu de son attraction, à aucun de ses rayons de parvenir jusqu'à nous. Il est dès lors possible que les plus grands corps lumineux de l'univers puissent, par cette cause, être invisibles. " Il présentera sa thèse devant l'auditoire de l'Académie des sciences, mais les physiciens resteront sceptiques sur les chances d'existence d'un tel objet. Ainsi naquit le concept du trou noir mais la démonstration mathématique de Laplace semblait fantaisiste aux yeux des astronomes. Le trou noir restera encore dans l'obscurité durant plus d'un siècle. Il réapparut au XXe siècle, lorsque Albert Einstein publia la théorie de la relativité générale. Laplace expose donc la même idée générale d'un astre obscur. Il la fait figurer dans les deux premières éditions de son livre Exposition du système du Monde, mais la retire des éditions ultérieures.
En 1915, Albert Einstein publie une nouvelle théorie de la gravitation, la relativité générale. Dans cette théorie, la gravitation s'identifie à des propriétés de l'espace, dont la structure est modifiée par la présence de matière. L'espace n'est plus une entité absolue, mais une structure souple déformée par la matière. L'écoulement du temps est également affecté par la présence de matière.
La complexité des équations de la relativité générale était telle qu'Einstein lui-même était sceptique quant à la possibilité que l'on puisse en trouver des solutions exactes. Cependant, quelques mois à peine après la publication de sa théorie, le physicien allemand Karl Schwarzschild trouve une solution de cette équation décrivant le champ gravitationnel extérieur d'une distribution de masse à symétrie sphérique. Cependant, cette solution peut être (au moins formellement) étendue même en l'absence de matière. Il existe toujours un champ gravitationnel se comportant de façon similaire à celui de la gravitation universelle, mais au centre l'endroit où se trouvait la distribution de matière apparaît ce qui est aujourd'hui appelé une singularité gravitationnelle, où le champ gravitationnel devient infini. Cette configuration, aujourd'hui connue pour décrire un trou noir, était considérée comme non physique par Schwarzschild et Einstein. Elle comportait également une zone entourant la singularité gravitationnelle où certaines quantités décrivant le champ gravitationnel n'étaient plus définies. En 1921, les physiciens Paul Painlevé et Allvar Gullstrand donnent indépendamment une interprétation de la cette région en utilisant une nouvelle solution, la métrique dite de Painlevé-Gullstrand : il s'agit d'un horizon des événements, dont il n'est possible de quitter l'intérieur une fois que l'on y a pénétré.
À la fin des années 1920, le physicien indien Subrahmanyan Chandrasekhar montre qu'au-delà d'une certaine masse (appelée depuis limite de Chandrasekhar) un objet astrophysique qui n'est pas le siège de réactions nucléaires (une naine blanche) s'effondre sur lui-même sous l'effet de sa propre gravité, car aucune force ne peut contrarier l'effet de la gravitation. Le résultat de cet effondrement n'est pas décrit avec précision par Chandrasekhar, mais correspond à un trou noir. Arthur Eddington, convaincu que quelque chose arrête inévitablement cet effondrement, s'oppose vivement aux arguments de Chandrasekhar lors d'une controverse restée célèbre (voir Masse maximale des naines blanches et la controverse avec Eddington). En fait, on sait aujourd'hui que l'effondrement d'une naine blanche donne naissance à une supernova de type Ia, mais le raisonnement de Chandrasekhar est par contre valable pour une étoile à neutrons, dont l'existence n'était pas avérée à l'époque de ces travaux.
En 1939, après que l'existence des étoiles à neutrons ait été prédite par Fritz Zwicky, Robert Oppenheimer et Hartland Snyder calculent qu'il existe une masse maximale aux étoiles à neutrons, au delà de laquelle elles s'effondrent sous l'effet de leur gravité. Cette même année, Albert Einstein publie un article dans lequel il montre que la " singularité de Schwarzschild " n'a pour lui aucun sens physique. Il écrit :[2] " Le résultat essentiel de cette article est la claire compréhension de pourquoi les " singularités de Schwarzschild " n'existent pas dans la réalité physique. Bien que la théorie présentée ici ne traite que de concentrations de particules qui suivent des trajectoires circulaires, cela ne semble pas être déraisonnable de penser que des cas plus généraux donneront des résultats analogues. La " singularité de Schwarzschild " n'existe pas pour la raison que la matière ne peut pas être concentrée arbitrairement. Et cela est dû au fait qu'autrement les particules la constituant atteindraient la vitesse de la lumière. ". Ces considérations seront par la suite réfutées à la fin des années 1960 par un ensemble de travaux auquel les noms de Stephen Hawking et de Roger Penrose sont fortement associés, les théorèmes sur les singularités.
L'intérêt pour les trous noir reprend à la fin des années 1950 lors de ce qui s'est appelé l'âge d'or de la relativité générale.
Le mathématicien néo-zélandais Roy Kerr trouve en 1963 une solution décrivant un trou noir en rotation (dit trou noir de Kerr), dont l'effet est d'entraîner l'espace environnant dans son mouvement de rotation.
La découverte des pulsars (forme observable des étoiles à neutrons) en 1967 puis du premier candidat trou noir (Cygnus X-1) en 1971 font entrer les trous noirs dans le champ de l'astronomie. Le terme de trou noir est proposé par John Archibald Wheeler en 1967. Le terme d'" étoile noire " (utilisé dans un des premiers épisodes de la série Star Trek) était également utilisé à l'époque. Le terme tarde à s'imposer dans certains pays. En France, le terme de " trou noir " ne provoque guère d'enthousiasme en raison de sa connotation sexuelle douteuse. Le terme d'" astre occlus " lui est un temps préféré, en hommage à Laplace. Le terme anglais entre finalement dans l'histoire et est traduit mot pour mot dans toutes les langues.
Depuis la fin du XXe siècle, les observations de systèmes astrophysiques qui sont considérés comme contenant un trou noir s'accumulent. Dans notre galaxie, on découvre plusieurs microquasars : SS 433, GRS 1915+105, GRO J1655-40, 1A 0620-00 etc. Une vingtaine de systèmes binaires sont connus à ce jour contenant un trou noir stellaire. Leur existence est principalement déduite grâce à la possibilité, dans une étoile binaire de déterminer les masses des deux composantes. Si l'une de ces masses dépasse la limite d'Oppenheimer-Volkoff qui fixe la masse maximale d'une étoile à neutrons, alors que l'objet est invisible, celui-ci est considéré comme un trou noir.