Un accélérateur MHD (magnétohydrodynamique) est un convertisseur MHD qui met en mouvement un fluide conducteur, grâce à un champ électrique et un champ magnétique combinés.
Le principe de base est le même que celui d'un moteur électrique. Tous deux possèdent un inducteur (électroaimant) générant un champ magnétique dans un induit.
Les accélérateurs MHD n'utilisent donc pas de pièce mécanique mobile, contrairement aux moteurs électriques traditionnels, et ils convertissent directement l'énergie électromagnétique en énergie cinétique. Le fluide est mis en mouvement dans le champ magnétique, par un champ électrique débitant un courant électrique aux bornes d'électrodes immergées dans le fluide.
Sans champ magnétique, la présence d'un champ électrique (électrostatique) accélère les particules chargées du fluide par la force électrique (selon la loi de Coulomb) :
|
La sens de cette force est inverse pour les particules positives (accélérées du + vers le -) et les particules négatives (accélérées du - vers le +). Le fluide reste globalement inerte.
Les particules chargées, accélérées par un champ électrique et en mouvement dans un champ magnétique, subissent une force électromagnétique dite force de Lorentz selon l'équation :
|
Souvent simplifiée en :
|
|
Les vecteurs F, I et B sont perpendiculaires les uns aux autres et forment un trièdre dans l'espace selon la règle de la main droite.
Le sens de cette force dépend de la charge q, il est donc inverse pour les particules positives et les particules négatives.
Un fluide conducteur possède en son sein des atomes neutres ainsi que des charges positives (ions positifs) et des charges négatives (ions négatifs, plus des électrons libres s'il s'agit d'un plasma). Le champ électrique accélère les particules chargées vers les électrodes en sens opposé selon leur charge ; et le champ magnétique dévie ces particules chargées, durant leur accélération, également en sens opposé selon leur charge. Cette double inversion "accélération électrique + déviation magnétique" résulte en une distribution des forces de Lorentz toutes parallèles et de même sens :
Le fluide est mis en mouvement uniforme, car toutes les particules, quelle que soit leur charge (positives et négatives, de même que les neutres par le jeu des collisions) sont entraînées dans le même sens.
On distingue les accélérateurs MHD :
Les convertisseurs MHD fonctionnant sans pièce mécanique mobile, il peuvent prendre une multitude de formes :
Les accélérateurs MHD sont principalement utilisés dans l'industrie sous forme de pompes électromagnétiques ainsi que dans les aspects propulsifs de véhicules de haute technologie ; et pour certains types d'armes militaires.
Les pompes électromagnétiques se divisent en quatre grandes catégories :
Les pompes à conduction à courant continu se rapprochent de la roue de Barlow. Deux électrodes débitent un courant continu, un aimant permanent (ou un électroaimant) permet de créer le champ magnétique. Les avantages principaux de ces pompes sont leur compacité et leur habilité à supporter les hautes températures sans refroidissement, grâce à des bobinages en argent.
Les pompes à conduction à courant alternatif font appel aux deux phénomènes de conduction et d'induction. Leur fonctionnement rappelle celui de certains transformateurs à entrefer. Leur principal défaut, hormis leur très faible rendement, est la cavitation. La pression à l'entrée de la pompe doit donc à tout instant être suffisante.
Les pompes à induction se rapprochent des moteurs asynchrones. Le rendement de ces machines est de l'ordre de 20 à 40 %. Il y a plusieurs causes à la limitation du rendement : les métaux liquides sont le plus souvent véhiculés par des conduits eux-mêmes métalliques, qui subissent des courants électriques parasites induits et de dérivation, provoquant des pertes. La longueur de l'entrefer est par ailleurs importante, à cause de l'épaisseur de l'isolant thermique associé (sodium, aluminium, magnésium, zinc...) ce qui engendre des fuites magnétiques. Enfin, les bobinages sont en conséquence volumineux afin de pouvoir créer des champs inducteurs suffisants, ce qui accroît d'autant les pertes par effet Joule.
Tous ces types de pompes ont été très utilisés dans les circuits du réacteur nucléaire Superphénix, ainsi que dans certaines fonderies d'aluminium pour doser ou transférer l'aluminium liquide.
Les accélérateurs MHD dans l'espace sont généralement appelés propulseurs électromagnétiques à plasma (le plasma est un gaz ionisé). Il s'inscrivent dans le futur proche de l'exploration spatiale au XXIe siècle[1].
Un gaz ionisé peut être accéléré grâce aux forces de Lorentz, interaction de courants électriques, émis à travers ce gaz, avec des champs magnétiques soit directement induits par ces courants (self-field accelerators) soit générés par des solénoïdes externes (applied-field accelerators). Les propulseurs équipés de solénoïdes peuvent d'ailleurs être conçus pour fonctionner sans décharge électrique dans le gaz (et donc sans électrode), par induction. Dans ce cas, c'est un champ magnétique rapidement variable qui induit des courants électriques dans le gaz, la combinaison des deux générant les forces de Lorentz. La propulsion électromagnétique est la sous-catégorie la plus évoluée de la propulsion électrique[2], qui en compte trois :
Voici les principaux moteurs électromagnétiques à plasma, par puissance croissante :
Les premières études sur la propulsion MHD en milieu océanique datent de la fin des années 1950 aux États-Unis[9]. En 1958, l'ingénieur Stewart Way, du département R&D de Westinghouse à Pittsburgh, publie un premier rapport officiel[10] sur le sujet. En 1961, Warren A. Rice dépose le premier brevet[11], en parallèle aux travaux des américains James B. Friauf[12] et O. M. Phillips[13]. Un second rapport de Stewart Way[14] est publié en 1964 par l'ASME (American Society of Mechanical Engineers). En 1966, S. Way teste avec succès le premier modèle-réduit de submersible à propulsion MHD muni de deux électrodes, long de 3 mètres et pesant 400 kilos, dans la baie de Santa Barbara en Californie. Ces recherches sont stoppées durant la décennie suivante, à cause de l'impossibilité de fabriquer les bobines produisant de très forts champs magnétiques nécessaires à un rendement MHD correct. Les Soviétiques continuent cependant les recherches militaires sur la propulsion MHD des sous-marins, afin de rendre ceux-ci silencieux et donc furtifs.
La disponibilité d'électroaimants supraconducteurs, capables de produire les champs magnétiques nécessaires (plusieurs teslas), relance ensuite ces études. Aux USA, celles-ci sont destinées en priorité aux submersibles de l'US Navy[15]. Dans les années 1990, l'Université de Pennsylvanie mène des expériences au FBNML (Francis Bitter National Magnet Laboratory) du MIT (Massachusetts Institute of Technology) en circuit fermé une configuration hélicoïdale, et obtient des vitesses d'écoulement de 3,7 mètres par seconde et un rendement de 10 % avec un champ magnétique de 8 teslas[16]. En parallèle à ces recherches universitaires, l'US Navy ne commente pas les éventuelles réalisations effectives, mais publie à la même époque plusieurs brevets[17] décrivant des sous-marins à propulsion MHD et à diminution de la traînée par contrôle de la couche limite en poupe.
Les Japonais mènent des recherches civiles sur la propulsion MHD depuis les années 1970. L'université de la marine marchande de Kobé réalise en 1976, sous la direction du physicien Yoshiro Saji, une première maquette suivie d'une seconde de 3,6 mètres de long pesant 700 kilos en 1979, et envisage à cette époque la future construction d'un brise-glace sans hélices propulsé par MHD[18]. Le premier véritable navire à propulsion MHD, le Yamato 1 (utilisant 12 accélérateurs linéaires de Faraday) navigue pour la première fois en 1992.
La Chine teste également à la fin des années 1990 un prototype de bateau à propulseur MHD hélicoïdal muni d'un électroaimant de 5 teslas, le HEMS-1[19], et entreprend un partenariat avec le Japon pour tester la propulsion MHD en laboratoire avec des champs magnétiques de grande intensité (15 teslas)[20].
En France, le physicien Jean-Pierre Petit du CNRS réalise, à l'IMFM (Institut de Mécanique des Fluides de Marseille) en 1976, l'annihilation de la vague d'étrave et de la turbulence de sillage autour d'un profil cylindrique, immergé dans un courant d'eau acidulée dans un champ magnétique de 4 teslas, par les forces de Lorentz en écoulement externe[21]. Dans les années 1990, la Marine nationale passe un contrat avec l'Université Grenoble-1, afin d'effectuer au LEGI (Laboratoire des écoulements géophysiques et industriels) une veille technologique sur la propulsion MHD.
L'action MHD sur l'air est aussi possible si cet air est rendu conducteur de l'électricité, par une ionisation qui le transforme en plasma.
Les applications propulsives de la MHD-gaz en milieu atmosphérique visent à vaincre le mur de la chaleur à vitesse hypersonique. Diverses études sont concernées, par ordre de difficulté technique croissant :
Ce cas particulier de la magnétohydrodynamique appliquée au milieu atmosphérique est la magnétoaérodynamique (MAD).
Certains canons électromagnétiques accélèrent un plasma par les forces de Lorentz, soit pour la propulsion directe des particules chargées à vitesse relativiste, soit pour la poussée d'un obus matériel :
Le spécialiste en MHD Jean-Pierre Petit (directeur de recherche au CNRS aujourd'hui à la retraite) défend la thèse invérifiable selon laquelle les militaires américains (et, dans une moindre mesure, les militaires russes) disposeraient d'engins exploitant la MHD-liquide depuis les années 1980 avec des submersibles et des torpilles MHD hypervéloces ; et la MHD-gaz depuis les années 1990 avec des aéronefs secrets hypersoniques : avion espion Aurora (à turboréacteurs conventionnels associés à un pontage MHD pariétal), bombardier antipodal issu du programme B-2 (à contrôle MHD de l'écoulement), drone discoïdal à propulsion MHD. Sans preuves tangibles, cette hypothèse ne peut être prise au sérieux.